[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A comprehensively improved local binary pattern framework for texture classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Local binary pattern (LBP) has been widely studied for its remarkable texture feature extraction capabilities. A large number of LBP variants have been proposed. Most of these variants still use the traditional LBPriu2 mapping method to achieve the purpose of dimensionality reduction or improvement of classification accuracy. In fact, LBPriu2 loses much texture information. Inspired by the idea of utilizing complementary information and multi-operator fusion, a mapping method based on triple complementary information (LBPOUS) is proposed in this paper. LBPOUS can further use complementary texture information to provide an alternative mapping solution for LBP variants, and it can be applied to any LBP variants that require mapping. Furthermore, classification accuracy, noise robustness, and computational complexity have always been the major problems for LBP to balance. This paper proposes a comprehensively improved local binary pattern framework (CILBPF). Firstly, the alpha-trimmed mean filter (ATMF) is improved to obtain well-rounded noise robustness. Secondly, LBPOUS is applied to LBP variants to retain richer texture information. Finally, the zero elimination (ZE) is improved to ensure that the feature dimensions are maintained at a relatively low level. Experiments are conducted on five representative public texture datasets, Outex, CUReT, UIUC, UMD, and ALOT. The results show that the proposed CILBPF can effectively improve the classification performance of LBP variants by adopting LBPOUS while ensuring computational complexity. Meanwhile, better handling of Gaussian noise and salt-and-pepper noise is also acquired. It is worth mentioning that the proposed framework also exhibits excellent noise robustness against mixed noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The data of this study are available from the corresponding author upon reasonable request.

References

  1. Liu L, Chen J, Fieguth P, Zhao G, Chellappa R, Pietikainen M (2019) From BoW to CNN: two decades of texture representation for texture classification. Int J Comput Vis 127:74–109. https://doi.org/10.1007/s11263-018-1125-z

    Article  Google Scholar 

  2. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-gcale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987. https://doi.org/10.1109/TPAMI.2002.1017623

    Article  Google Scholar 

  3. Tuncer T, Dogan S, Ozyurt F (2020) An automated residual exemplar local binary pattern and iterative ReliefF based COVID-19 detection method using chest X-ray image. Chemom Intell Lab Syst 203:104054. https://doi.org/10.1016/j.chemolab.2020.104054

    Article  Google Scholar 

  4. Rampun A, Morrow PJ, Scotney BW, Wang H (2020) Breast density classification in mammograms: an investigation of encoding techniques in binary-based local patterns. Comput Biol Med 122:103842. https://doi.org/10.1016/j.compbiomed.2020.103842

    Article  Google Scholar 

  5. Alksas A, Shaffie A, Ghazal M, Taher F, Khelifi A (2023) A novel higher order appearance texture analysis to diagnose lung cancer based on a modified local ternary pattern. Comput Methods Programs Biomed 240:107692. https://doi.org/10.1016/j.cmpb.2023.107692

    Article  Google Scholar 

  6. Yu Y, Lin C, Lu C, Wang J, Huang T (2023) Automated age-related macular degeneration detector on optical coherence tomography images using slice-sum local binary patterns and support vector machine. Sens 23(17):7315. https://doi.org/10.3390/s23177315

    Article  Google Scholar 

  7. Fei L, Zhang B, Xu Y, Huang D, Jia W, Wen J (2020) Local Discriminant Direction Binary Pattern for Palmprint representation and recognition. IEEE Trans Circuits Syst Video Technol 30(2):468–481. https://doi.org/10.1109/TCSVT.2019.2890835

    Article  Google Scholar 

  8. Jin L, Zhou Y, Ma G, Song E (2024) Quaternion deformable local binary pattern and pose-correction facial decomposition for color facial expression recognition in the wild. IEEE Trans Comput Soc Syst 11(2):2464–2478. https://doi.org/10.1109/TCSS.2023.3305616

    Article  Google Scholar 

  9. Zhang Z, Wang M (2022) Multi-feature fusion partitioned local binary pattern method for finger vein recognition. Signal Image Video Process 16:1091–1099. https://doi.org/10.1007/s11760-021-02058-2

    Article  Google Scholar 

  10. Al Saidi I, Rziza M, Debayle J (2023) Completed homogeneous LBP for remote sensing image classification. Int J Remote Sens 44(12):3815–3836. https://doi.org/10.1080/01431161.2023.2227320

    Article  Google Scholar 

  11. Wan X, Chen S (2023) Hyperspectral image classification using improved multi-scale block local binary pattern and bi-exponential edge-preserving smoother. Eur J Remote Sens 56(1):2237654. https://doi.org/10.1080/22797254.2023.2237654

    Article  Google Scholar 

  12. Liu Q, Song Y, Tang Q, Bu X, Hanajima N (2023) Wire rope defect identification based on ISCM-LBP and GLCM features. Vis Comput. https://doi.org/10.1007/s00371-023-02800-6

    Article  Google Scholar 

  13. Ahmad W, Adnan SM, Irtaza A (2023) Local triangular-ternary pattern: a novel feature descriptor for plant leaf disease detection. Multimed Tools Appl. https://doi.org/10.1007/s11042-023-16420-8

    Article  Google Scholar 

  14. Liu L, Fieguth P, Guo Y, Wang X, Pietikainen M (2017) Local binary features for texture classification: taxonomy and experimental study. Pattern Recognit 62:135–160. https://doi.org/10.1016/j.patcog.2016.08.032

    Article  Google Scholar 

  15. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663. https://doi.org/10.1109/TIP.2010.2044957

    Article  MathSciNet  Google Scholar 

  16. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650. https://doi.org/10.1109/TIP.2010.2042645

    Article  MathSciNet  Google Scholar 

  17. Zhao Y, Huang D, Jia W (2012) Completed local binary count for rotation invariant texture classification. IEEE Trans Image Process 21(10):4492–4497. https://doi.org/10.1109/TIP.2012.2204271

    Article  MathSciNet  Google Scholar 

  18. Liu L, Long Y, Fieguth PW, Lao S, Zhao G (2014) BRINT: binary rotation invariant and noise tolerant texture classification. IEEE Trans Image Process 23(7):3071–3084. https://doi.org/10.1109/TIP.2014.2325777

    Article  MathSciNet  Google Scholar 

  19. Liu L, Lao S, Fieguth PW, Guo Y, Wang X, Pietikainen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381. https://doi.org/10.1109/TIP.2016.2522378

    Article  MathSciNet  Google Scholar 

  20. Xu X, Li Y, Wu QMJ (2021) A compact multi-pattern encoding descriptor for texture classification. Digit Signal Process 114:103081. https://doi.org/10.1016/j.dsp.2021.103081

    Article  Google Scholar 

  21. Wu X, Sun J (2017) Joint-scale LBP: a new feature descriptor for texture classification. Vis Comput 33(3):317–329. https://doi.org/10.1007/s00371-015-1202-z

    Article  Google Scholar 

  22. Lan S, Liao X, Fan H, Hu S, Pan Z (2023) A multi-channel framework based local binary pattern with two novel local feature descriptors for texture classification. Digit Signal Process 140:104124. https://doi.org/10.1016/j.dsp.2023.104124

    Article  Google Scholar 

  23. Lan S, Li J, Hu S, Fan H, Pan Z (2023) A neighbourhood feature-based local binary pattern for texture classification. Vis Comput. https://doi.org/10.1007/s00371-023-03041-3

    Article  Google Scholar 

  24. Arya R, Vimina ER (2023) Local triangular coded pattern: a texture descriptor for image classification. IETE J Res 69(6):3267–3278. https://doi.org/10.1080/03772063.2021.1919222

    Article  Google Scholar 

  25. Singh RP, Dash R, Mohapatra RK (2023) LBP and CNN feature fusion for face anti-spoofing. Pattern Anal Appl 26(2):773–782. https://doi.org/10.1007/s10044-023-01132-4

    Article  Google Scholar 

  26. Zhou K, Zhang M, Lin S, Zhang R, Wang H (2023) Single-stage object detector with local binary pattern for remote sensing images. Int J Remote Sens 44(13):4137–4162. https://doi.org/10.1080/01431161.2023.2232543

    Article  Google Scholar 

  27. Tajeripour F, Kabir E, Sheikhi A (2007) Fabric defect detection using modified local binary patterns. EURASIP J Adv Signal Process 2008:783898. https://doi.org/10.1155/2008/783898

  28. Song T, Feng J, Luo L, Gao C, Li H (2021) Robust texture description using local grouped order pattern and non-local binary pattern. IEEE Trans Circuits Syst Video Technol 31(1):189–202. https://doi.org/10.1109/TCSVT.2020.2972155

    Article  Google Scholar 

  29. Shu X, Pan H, Shi J, Song X, Wu X (2022) Using global information to refine local patterns for texture representation and classification. Pattern Recognit 131:108843. https://doi.org/10.1016/j.patcog.2022.108843

    Article  Google Scholar 

  30. Shakoor MH, Boostani R, Sabeti M, Mohammadi M (2023) Feature selection and mapping of local binary pattern for texture classification. Multimed Tools Appl 82:7639–7676. https://doi.org/10.1007/s11042-022-13470-2

    Article  Google Scholar 

  31. Ojala T, Maenpaa T, Pietikainen M, Viertola J, Kyllonen J, Huovinen S (2002) Outex—new framework for empirical evaluation of texture analysis algorithms. In: 16th International Conference on Pattern Recognition, vol 1, pp 701–706. https://doi.org/10.1109/ICPR.2002.1044854

  32. Varma M, Zisserman A (2009) A statistical approach to material classification using image patches. IEEE Trans Pattern Anal Mach Intell 31(11):2032–2047. https://doi.org/10.1109/TPAMI.2008.182

    Article  Google Scholar 

  33. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278. https://doi.org/10.1109/TPAMI.2005.151

    Article  Google Scholar 

  34. Xu Y, Yang X, Ling H (2010) A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 161–168.  https://doi.org/10.1109/CVPR.2010.5540217

  35. Burghouts GJ, Geusebroek JM (2009) Material specific adaptation of color invariant features. Pattern Recognit Lett 30(3):306–313. https://doi.org/10.1016/j.patrec.2008.10.005

    Article  Google Scholar 

  36. Luo Y, Sa J, Song Y, Jiang H, Zhang C, Zhang Z (2023) Texture classification combining improved local binary pattern and threshold segmentation. Multimed Tools Appl 82:25899–25916. https://doi.org/10.1007/s11042-023-14749-8

    Article  Google Scholar 

  37. Armi L, Fekri-Ershad S (2019) Texture image classification based on improved local Quinary patterns. Multimed Tools Appl 78(14):18995–19018. https://doi.org/10.1007/s11042-019-7207-2

    Article  Google Scholar 

Download references

Funding

The research leading to these results received funding from Supporting enterprise technology innovation and development projects of Hubei Province under Grant Agreement No.2021BAB040.

Author information

Authors and Affiliations

Authors

Contributions

YS: Conceptualization, methodology, software, writing—original draft and editing. JS: Formal analysis and investigation, writing—review and editing, supervision. YL: Formal analysis and investigation, validation, visualization. ZZ: Formal analysis and investigation, supervision. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jiming Sa.

Ethics declarations

Ethics approval

Compliance with Ethical Standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Sa, J., Luo, Y. et al. A comprehensively improved local binary pattern framework for texture classification. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19877-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19877-3

Keywords