[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Quantum Torus Algebras and B(C)-Type Toda Systems

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

In this paper, we construct a new even constrained B(C)-type Toda hierarchy and derive its B(C)-type Block-type additional symmetry. Also we generalize the B(C)-type Toda hierarchy to the N-component B(C)-type Toda hierarchy which is proved to have symmetries of a coupled \(\bigotimes ^NQT_+ \) algebra (N-fold direct product of the positive half of the quantum torus algebra QT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Álvarez-Fernández, C., Fidalgo Prieto, U., Mañas, M.: The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann-Hilbert problems. Inverse Probl. 26, 055009 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Álvarez-Fernández, C., Prieto, U.F., Mañas, M.: Multiple orthogonal polynomials of mixed type: Gauss–Borel factorization and the multi-component 2D Toda hierarchy. Adv. Math. 227, 1451–1525 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Carlet, G.: The extended bigraded Toda hierarchy. J. Phys. A Math. Theor. 39, 9411–9435 (2006)

    MathSciNet  MATH  Google Scholar 

  • Carlet, G., van de Leur, J.: Hirota equations for the extended bigraded Toda hierarchy and the total descendent potential of \(\mathbb{P}^1\) orbifolds. J. Phys. A Math. Theor. 46, 405205–405220 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Carlet, G., Dubrovin, B., Zhang, Y.: The extended Toda hierarchy. Mosc. Math. J. 4, 313–332 (2004)

    MathSciNet  MATH  Google Scholar 

  • Cheng, J.P., Tian, K.L., He, J.S.: The additional symmetries for the BTL and CTL hierarchies. J. Math. Phys. 51, 053515 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Dijkgraaf, R., Witten, E.: Mean field theory, topological field theory, and multimatrix models. Nucl. Phys. B 342, 486–522 (1990)

    Article  Google Scholar 

  • Li, C.Z.: Solutions of bigraded Toda hierarchy. J. Phys. A Math. Theor. 44, 255201 (2011). arXiv:1011.4684

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C.Z., He, J.S.: Dispersionless bigraded Toda hierarchy and its additional symmetry. Rev. Math. Phys. 24, 1230003 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C.Z., He, J.S.: On the extended multi-component Toda hierarchy. Math. Phys. Anal. Geom. 17, 377–407 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C.Z., He, J.S.: The extended \(Z_N\)-Toda hierarchy. Theor. Math. Phys. 185, 1614–1635 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C.Z., He, J.S., Wu, K., Cheng, Y.: Tau function and Hirota bilinear equations for the extended bigraded Toda Hierarchy. J. Math. Phys. 51, 043514 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, C.Z., He, J.S., Su, Y.C.: Block type symmetry of bigraded Toda hierarchy. J. Math. Phys. 53, 013517 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Mañas, M., Alonso, L.M.: The multicomponent 2D Toda hierarchy: dispersionless limit. Inverse Probl. 25, 11 (2009)

    MathSciNet  MATH  Google Scholar 

  • Mañas, M., Alonso, M.L., Álvarez-Fernández, C.: The multicomponent 2D Toda hierarchy: discrete flows and string equations. Inverse Probl. 25, 065007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • Toda, M.: Wave propagation in anharmonic lattices. J. Phys. Soc. Jpn. 23, 501–506 (1967)

    Article  Google Scholar 

  • Ueno, K., Takasaki, K.: Toda lattice hierarchy, In Group representations and systems of differential equations (Tokyo, 1982), 1–95, Adv. Stud. Pure Math. 4, North-Holland, Amsterdam (1984)

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11571192 and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhong Li.

Additional information

Communicated by Anthony Bloch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Li, C. Quantum Torus Algebras and B(C)-Type Toda Systems. J Nonlinear Sci 27, 1957–1970 (2017). https://doi.org/10.1007/s00332-017-9392-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-017-9392-3

Keywords

Mathematics Subject Classification

Navigation