Abstract
The extended flow equations of the multi-component Toda hierarchy are constructed. We give the Hirota bilinear equations and tau function of this new extended multi-component Toda hierarchy(EMTH). Because of logarithmic terms, some extended Vertex operators are constructed in generalized Hirota bilinear equations which might be useful in topological field theory and Gromov-Witten theory. Meanwhile the Darboux transformation and bi-hamiltonian structure of this hierarchy are given. From the hamiltonian tau symmetry, we give another different tau function of this hierarchy with some unknown mysterious connections with the one defined from the point of wave functions.
Similar content being viewed by others
References
Toda, M.: Vibration of a chain with nonlinear interaction. J. Phys. Soc. Jpn. 22, 431–436 (1967)
Toda, M.: Nonlinear waves and solitons. Dordrecht, Kluwer Academic Publishers (1989)
Ueno, K., Takasaki, K.: Toda lattice hierarchy. In: Group Representations and Systems of Differential Equations (Tokyo, 1982), Adv. Stud. Pure Math., pp. 1–95, p 4. North-Holland, Amsterdam (1984)
Witten, E.: Two-dimensional gravity and intersection theory on moduli space. Surv Differ Geom 1, 243–310 (1991)
Dubrovin, B.A.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, pp. 120–348. Springer, Berlin (1996)
Carlet, G., Dubrovin, B., Zhang, Y.: The Extended Toda Hierarchy. Moscow Math. J. 4, 313–332 (2004)
Milanov, T.: Hirota quadratic equations for the extended Toda hierarchy. Duke Math. J. 138, 161–178 (2007)
Carlet, G.: The extended bigraded Toda hierarchy. J. Phys. A 39, 9411–9435 (2006)
Li, C.Z., He, J.S., Wu, K., Cheng, Y.: Tau function and Hirota bilinear equations for the extended bigraded Toda Hierarchy. J. Math. Phys. 51, 043514 (2010)
Aoyama, S., Kodama, Y.: Topological Landau-Ginzburg theory with a rational potential and the dispersionless KP hierarchy. Commun. Math. Phy. 182, 185–219 (1996)
Milanov, T., Tseng, H.H.: The spaces of Laurent polynomials, \(\mathbb {P}^{1}\)-orbifolds, and integrable hierarchies. J. für die reine und Angew. Math. 622, 189–235 (2008)
Li, C.Z.: Solutions of bigraded Toda hierarchy. J. Phys. A 44, 255201 (2011)
Li, C.Z., He, J.S.: Dispersionless bigraded Toda hierarchy and its additional symmetry. Rev. Math. Phys. 24, 1230003 (2012)
Li, C.Z., He, J.S., Su, Y.C.: Block type symmetry of bigraded Toda hierarchy. J. Math. Phys. 53, 013517 (2012)
Milanov, T., Shen, Y.F., Tseng, H.H.: Gromov-Witten theory of Fano orbifold curves, Gamma integral structures and ADE-Toda Hierarchies, arXiv: 1401.5778
Kac, V.G., van de Leur, J.W.: The n-component KP hierarchy and representation theory. J. Math. Phys. 44, 3245 (2003)
Adler, M., van Moerbeke, P., Vanhaecke, P.: Moment matrices and multi-component KP, with applications to random matrix theory. Commun. Math. Phys. 286, 1–38 (2009)
Mañas, M., Martínez Alonso, L.: The multicomponent 2D Toda hierarchy: dispersionless limit. Inverse Probl. 25, 11 (2009)
Mañas, M., Martínez Alonso, L., Álvarez Fernández, C.: The multicomponent 2D Toda hierarchy: discrete flows and string equations. Inverse Probl 25, 065007 (2009)
Álvarez Fernández, C., Fidalgo Prieto, U., Mañas, M.: The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann–Hilbert problems. Inverse Probl. 26, 055009 (2010)
Álvarez Fernández, C., Fidalgo Prieto, U., Mañas, M.: Multiple orthogonal polynomials of mixed type: Gauss-Borel factorization and the multi-component 2D Toda hierarchy. Adv. Math. 227, 1451–1525 (2011)
Carlet, G., van de Leur, J. : Hirota equations for the extended bigraded Toda hierarchy and the total descendent potential of \(\mathbb {P}^{1}\) orbifolds. J. Phys. A: Math. Theor. 46, 405205 (2013). arxiv: 1304.1632
He, J.S., Zhang, L., Cheng, Y., Li, Y.S.: Determinant representation of Darboux transformation for the AKNS system. Sci. China A 12, 1867–78 (2006)
Li, C.Z., He, J.S., Porsezian, K.: Rogue waves of the Hirota and the Maxwell-Bloch equation. Phys. Rev. E 87, 012913 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, C., He, J. On the Extended Multi-component Toda Hierarchy. Math Phys Anal Geom 17, 377–407 (2014). https://doi.org/10.1007/s11040-014-9162-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11040-014-9162-5
Keywords
- Multi-component Toda hierarchy
- Extended multi-component Toda hierarchy
- Darboux transformation
- bi-Hamiltonian structure
- tau function