Abstract
We find the form of the Orlov–Schulman operator of the modified \(B\)KP hierarchy, which played a pivotal role in the construction of additional symmetries for the modified \(B\)KP hierarchy. We investigate the tau functions of the modified \(B\)KP hierarchy and give many interesting properties, including Hirota bilinear identities and \((\)differential\()\) Fay identities. We also present the multicomponent modified \(B\)KP hierarchy and define a series of additional flows of the multicomponent modified \(B\)KP hierarchy that constitute an \(N\)-fold direct product of the positive half of the quantum torus symmetries. Finally, we introduce the noncommutative modified \(B\)KP hierarchy and derive its symmetries, as we do for the multicomponent modified \(B\)KP hierarchy.
Similar content being viewed by others
References
M. Jimbo and T. Miwa, “Solitons and infinite dimensional Lie algebras,” Publ. Res. Inst. Math. Sci., 19, 943–1001 (1983).
M. Kashiwara and T. Miwa, “The \(\tau\) function of the Kadomtsev–Petviashvili equation. Transformation groups for soliton equations. I,” Proc. Japan Acad. Ser. A., 57, 342–347 (1981).
E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in: Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981, M. Jimbo, T. Miwa, eds.), World Sci., Singapore (1983), pp. 39–119.
L. A. Dickey, Soliton Equations and Hamiltonian Systems (Advanced Series in Mathematical Physics, Vol. 12), World Sci., Singapore (1991).
V. G. Kac and J. W. van de Leur, “The \(n\)-component KP hierarchy and representation theory,” in: Important Developments in Soliton Theory (A. S. Fokas and V. E. Zakharov, eds.) Springer, Berlin (1993), pp. 302–343.
J. Lee, “A square root of Hurwitz numbers,” Manuscripta Math., 162, 99–113 (2020); arXiv: 1807.03631.
A. Mironov, A. Morozov, and S. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers,” Eur. Phys. J. C, 80, 97, 16 pp. (2020); arXiv: 1904.11458.
J. Harnad and A. Yu. Orlov, “Bilinear expansions of lattices of KP \(\tau\)-functions in BKP \(\tau\)-functions: A fermionic approach,” J. Math. Phys., 62, 013508, 17 pp. (2021); arXiv: 2010.05055.
J. Harnad and A. Yu. Orlov, “Bilinear expansions of Schur functions in Schur \(Q\)-functions: A fermionic approach,” arXiv: 2008.13734.
A. Mironov and A. Morozov, “Superintegrability of Kontsevich matrix model,” Eur. Phys. J. C, 81, 270, 11 pp. (2021); arXiv: 2011.12917.
X. Liu and C. Yang, “Schur \(Q\)-polynomials and Kontsevich–Witten tau function,” arXiv: 2103.14318.
Z. L. Wang and H. S. Li, “BKP hierarchy and Pfaffian point process,” Nucl. Phys. B, 939, 447–464 (2019); arXiv: 1807.02259.
C. Z. Li, “Dispersionless and multicomponent BKP hierarchies with quantum torus symmetries,” J. Geom. Phys., 119, 103–111 (2017); arXiv: 1703.00101.
A. Yu. Orlov and E. I. Schulman, “Additional symmetries of integrable equations and conformal algebra reprensentation,” Lett. Math. Phys., 12, 171–179 (1986).
R. Dijkgraaf and E. Witten, “Mean field theory, topological field theory, and multimatrix models,” Nucl. Phys. B, 342, 486–522 (1990).
M. Douglas, “Strings in less than one dimension and the generalized KdV hierarchie,” Phys. Lett. B, 238, 176–180 (1990).
K. Kiso, “A remark on the commuting flows defined by Lax equations,” Prog. Theor. Phys., 83, 1108–1125 (1990).
B. A. Kupershmidt, “Mathematics of dispersive water waves,” Commun. Math. Phys., 99, 51–73 (1985).
I. Ya. Dorfman and A. S. Fokas, “Hamiltonian theory over noncommutative rings and integrability in multidimensions,” J. Math. Phys., 33, 2504–2514 (1992).
M. Hamanaka and K. Toda, “Towards noncommutative integrable systems,” Phys. Lett. A, 316, 77–83 (2003); arXiv: hep-th/0211148.
M. Sakakibara, “Factorization methods for noncommutative KP and Toda hierarchy,” J. Phys. A: Math. Theor., 37, L599–L604 (2004); arXiv: nlin/0408002.
M. Hamanaka, “Noncommutative integrable systems and quasideterminants,” AIP Conf. Proc., 1212, 122–135 (2010); arXiv: 1012.6043.
M. R. Douglas and N. A. Nekrasov, “Noncommutative field theory,” Rev. Modern Phys., 73, 977–986 (2002); arXiv: hep-th/0106048.
M. Adler, P. van Moerbeke, and P. Vanhaecke, “Moment matrices and multi-component KP with applications to random matrix theory,” Commun. Math. Phys., 286, 1–38 (2009).
R. Block, “On torsion-free abelian groups and Lie algebras,” Proc. Amer. Math. Soc., 9, 613–620 (1958).
J. M. Osborn and K. Zhao, “Infinite-dimensional Lie algebras of generalized Block type,” Proc. Amer. Math. Soc., 127, 1641–1650 (1999).
X. Xu, “Generalizations of Block algebras,” Manuscripta Math., 100, 489–518 (1999).
Y. Su, “Quasifinite representations of a Lie algebra of Block type,” J. Algebra, 276, 117–128 (2004).
C. Z. Li, “Symmetries and Reductions on the noncommutative Kadomtsev–Petviashvili and Gelfand–Dickey hierarchies,” J. Math. Phys., 59, 123503, 12 pp. (2018); arXiv: 1907.04169.
A. Yu. Orlov, “Vertex operator, \(\overline\partial\)-problem, symmetries, variational identities and Hamiltonian formalism for \(2+1\) integrable systems,” in: Plasma Theory and Nonlinear and Turbulent Processes in Physics, Vol. 1 (Kiev, USSR, 13–25 April, 1987, V. G. Baryakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, and V. E. Zakharov, eds.), World Sci., Singapore (1988), pp. 116–134.
C. Z. Li, “Multicomponent fractional Volterra hierarchy and its subhierarchy with Virasoro symmetry,” Theoret. and Math. Phys., 207, 397–414 (2021).
C. Z. Li, “Finite-dimensional tau functions of the universal character hierarchy,” Theoret. and Math. Phys., 206, 321–334 (2021).
C. Z. Li, “Two-component symplectic universal characters and integrable hierarchies,” Internat. J. Math., 32, 2150045, 15 pp. (2021).
J. P. Cheng, “The BKP hierarchy and the modified BKP hierarchy,” submitted.
R. Hirota, The Direct Method in Soliton Theory (Cambridge Tracts in Mathematics, Vol. 155), Cambridge Univ. Press, Cambridge (2004).
K. L. Tian, J. S. He, J. P. Cheng, and Y. Cheng, “Additional symmetries of constrained CKP and BKP hierarchies,” Sci. China Math., 54, 257–268 (2011).
Funding
Chuanzhong Li is supported by the National Natural Science Foundation of China under Grant no. 12071237 and K. C. Wong Magna Fund in Ningbo University.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no conflicts of interest.
Additional information
Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 438–464 https://doi.org/10.4213/tmf10099.
Rights and permissions
About this article
Cite this article
Wang, Z., Li, C. On modified \(B\)KP systems and generalizations. Theor Math Phys 209, 1693–1716 (2021). https://doi.org/10.1134/S0040577921120047
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S0040577921120047