[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On modified \(B\)KP systems and generalizations

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We find the form of the Orlov–Schulman operator of the modified \(B\)KP hierarchy, which played a pivotal role in the construction of additional symmetries for the modified \(B\)KP hierarchy. We investigate the tau functions of the modified \(B\)KP hierarchy and give many interesting properties, including Hirota bilinear identities and \((\)differential\()\) Fay identities. We also present the multicomponent modified \(B\)KP hierarchy and define a series of additional flows of the multicomponent modified \(B\)KP hierarchy that constitute an \(N\)-fold direct product of the positive half of the quantum torus symmetries. Finally, we introduce the noncommutative modified \(B\)KP hierarchy and derive its symmetries, as we do for the multicomponent modified \(B\)KP hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Jimbo and T. Miwa, “Solitons and infinite dimensional Lie algebras,” Publ. Res. Inst. Math. Sci., 19, 943–1001 (1983).

    Article  MathSciNet  Google Scholar 

  2. M. Kashiwara and T. Miwa, “The \(\tau\) function of the Kadomtsev–Petviashvili equation. Transformation groups for soliton equations. I,” Proc. Japan Acad. Ser. A., 57, 342–347 (1981).

    Article  Google Scholar 

  3. E. Date, M. Jimbo, M. Kashiwara, and T. Miwa, “Transformation groups for soliton equations,” in: Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13–16, 1981, M. Jimbo, T. Miwa, eds.), World Sci., Singapore (1983), pp. 39–119.

    MathSciNet  MATH  Google Scholar 

  4. L. A. Dickey, Soliton Equations and Hamiltonian Systems (Advanced Series in Mathematical Physics, Vol. 12), World Sci., Singapore (1991).

    Book  Google Scholar 

  5. V. G. Kac and J. W. van de Leur, “The \(n\)-component KP hierarchy and representation theory,” in: Important Developments in Soliton Theory (A. S. Fokas and V. E. Zakharov, eds.) Springer, Berlin (1993), pp. 302–343.

    Article  MathSciNet  Google Scholar 

  6. J. Lee, “A square root of Hurwitz numbers,” Manuscripta Math., 162, 99–113 (2020); arXiv: 1807.03631.

    Article  MathSciNet  Google Scholar 

  7. A. Mironov, A. Morozov, and S. Natanzon, “Cut-and-join structure and integrability for spin Hurwitz numbers,” Eur. Phys. J. C, 80, 97, 16 pp. (2020); arXiv: 1904.11458.

    Article  ADS  Google Scholar 

  8. J. Harnad and A. Yu. Orlov, “Bilinear expansions of lattices of KP \(\tau\)-functions in BKP \(\tau\)-functions: A fermionic approach,” J. Math. Phys., 62, 013508, 17 pp. (2021); arXiv: 2010.05055.

    Article  MathSciNet  Google Scholar 

  9. J. Harnad and A. Yu. Orlov, “Bilinear expansions of Schur functions in Schur \(Q\)-functions: A fermionic approach,” arXiv: 2008.13734.

  10. A. Mironov and A. Morozov, “Superintegrability of Kontsevich matrix model,” Eur. Phys. J. C, 81, 270, 11 pp. (2021); arXiv: 2011.12917.

    Article  ADS  Google Scholar 

  11. X. Liu and C. Yang, “Schur \(Q\)-polynomials and Kontsevich–Witten tau function,” arXiv: 2103.14318.

  12. Z. L. Wang and H. S. Li, “BKP hierarchy and Pfaffian point process,” Nucl. Phys. B, 939, 447–464 (2019); arXiv: 1807.02259.

    Article  MathSciNet  ADS  Google Scholar 

  13. C. Z. Li, “Dispersionless and multicomponent BKP hierarchies with quantum torus symmetries,” J. Geom. Phys., 119, 103–111 (2017); arXiv: 1703.00101.

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Yu. Orlov and E. I. Schulman, “Additional symmetries of integrable equations and conformal algebra reprensentation,” Lett. Math. Phys., 12, 171–179 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Dijkgraaf and E. Witten, “Mean field theory, topological field theory, and multimatrix models,” Nucl. Phys. B, 342, 486–522 (1990).

    Article  ADS  Google Scholar 

  16. M. Douglas, “Strings in less than one dimension and the generalized KdV hierarchie,” Phys. Lett. B, 238, 176–180 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  17. K. Kiso, “A remark on the commuting flows defined by Lax equations,” Prog. Theor. Phys., 83, 1108–1125 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  18. B. A. Kupershmidt, “Mathematics of dispersive water waves,” Commun. Math. Phys., 99, 51–73 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  19. I. Ya. Dorfman and A. S. Fokas, “Hamiltonian theory over noncommutative rings and integrability in multidimensions,” J. Math. Phys., 33, 2504–2514 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  20. M. Hamanaka and K. Toda, “Towards noncommutative integrable systems,” Phys. Lett. A, 316, 77–83 (2003); arXiv: hep-th/0211148.

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Sakakibara, “Factorization methods for noncommutative KP and Toda hierarchy,” J. Phys. A: Math. Theor., 37, L599–L604 (2004); arXiv: nlin/0408002.

    Article  MathSciNet  ADS  Google Scholar 

  22. M. Hamanaka, “Noncommutative integrable systems and quasideterminants,” AIP Conf. Proc., 1212, 122–135 (2010); arXiv: 1012.6043.

    Article  MathSciNet  ADS  Google Scholar 

  23. M. R. Douglas and N. A. Nekrasov, “Noncommutative field theory,” Rev. Modern Phys., 73, 977–986 (2002); arXiv: hep-th/0106048.

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Adler, P. van Moerbeke, and P. Vanhaecke, “Moment matrices and multi-component KP with applications to random matrix theory,” Commun. Math. Phys., 286, 1–38 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Block, “On torsion-free abelian groups and Lie algebras,” Proc. Amer. Math. Soc., 9, 613–620 (1958).

    Article  MathSciNet  Google Scholar 

  26. J. M. Osborn and K. Zhao, “Infinite-dimensional Lie algebras of generalized Block type,” Proc. Amer. Math. Soc., 127, 1641–1650 (1999).

    Article  MathSciNet  Google Scholar 

  27. X. Xu, “Generalizations of Block algebras,” Manuscripta Math., 100, 489–518 (1999).

    Article  MathSciNet  Google Scholar 

  28. Y. Su, “Quasifinite representations of a Lie algebra of Block type,” J. Algebra, 276, 117–128 (2004).

    Article  MathSciNet  Google Scholar 

  29. C. Z. Li, “Symmetries and Reductions on the noncommutative Kadomtsev–Petviashvili and Gelfand–Dickey hierarchies,” J. Math. Phys., 59, 123503, 12 pp. (2018); arXiv: 1907.04169.

    Article  MathSciNet  ADS  Google Scholar 

  30. A. Yu. Orlov, “Vertex operator, \(\overline\partial\)-problem, symmetries, variational identities and Hamiltonian formalism for \(2+1\) integrable systems,” in: Plasma Theory and Nonlinear and Turbulent Processes in Physics, Vol. 1 (Kiev, USSR, 13–25 April, 1987, V. G. Baryakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, and V. E. Zakharov, eds.), World Sci., Singapore (1988), pp. 116–134.

    MathSciNet  Google Scholar 

  31. C. Z. Li, “Multicomponent fractional Volterra hierarchy and its subhierarchy with Virasoro symmetry,” Theoret. and Math. Phys., 207, 397–414 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  32. C. Z. Li, “Finite-dimensional tau functions of the universal character hierarchy,” Theoret. and Math. Phys., 206, 321–334 (2021).

    Article  MathSciNet  ADS  Google Scholar 

  33. C. Z. Li, “Two-component symplectic universal characters and integrable hierarchies,” Internat. J. Math., 32, 2150045, 15 pp. (2021).

    Article  MathSciNet  Google Scholar 

  34. J. P. Cheng, “The BKP hierarchy and the modified BKP hierarchy,” submitted.

  35. R. Hirota, The Direct Method in Soliton Theory (Cambridge Tracts in Mathematics, Vol. 155), Cambridge Univ. Press, Cambridge (2004).

    Book  Google Scholar 

  36. K. L. Tian, J. S. He, J. P. Cheng, and Y. Cheng, “Additional symmetries of constrained CKP and BKP hierarchies,” Sci. China Math., 54, 257–268 (2011).

    Article  MathSciNet  Google Scholar 

Download references

Funding

Chuanzhong Li is supported by the National Natural Science Foundation of China under Grant no. 12071237 and K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanzhong Li.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2021, Vol. 209, pp. 438–464 https://doi.org/10.4213/tmf10099.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Li, C. On modified \(B\)KP systems and generalizations. Theor Math Phys 209, 1693–1716 (2021). https://doi.org/10.1134/S0040577921120047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577921120047

Keywords

Navigation