[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Molecular Evolution of Cytochrome c Oxidase in High-Performance Fish (Teleostei: Scombroidei)

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

The 13 peptides encoded by vertebrate mitochondrial DNA (mtDNA) are essential subunits of oxidative phosphorylation (OXPHOS) enzymes. These genes normally experience purifying selection and also coevolve with nuclear-encoded subunits of OXPHOS complexes. However, the role of positive selection on mtDNA evolution is still unclear, as most examples of intergenomic coevolution appear to be the result of compensation by nuclear-encoded genes for mildly deleterious mtDNA mutations, and not simultaneous positive selection in both genomes. Organisms that have experienced strong selective pressures to increase aerobic capacity or adapt to changes in thermal environment may be better candidates in which to examine the impact of positively selected changes on mtDNA evolution. The tuna (suborder Scombroidei, family Scombridae) and billfish (suborder Scombroidei, families Xiphiidae and Istiophoridae) are highly aerobic fish with multiple specializations in muscle energetics, including a high mitochondrial content and regional endothermy. We examined the role of positively selected mtDNA substitutions in the production of these unique phenotypes. Focusing on a catalytic subunit of cytochrome c oxidase (COX II), we found that the rate ratio of nonsynonymous (d N ; amino acid changing)-to-synonymous (d S ; silent) substitutions was not increased in lineages leading to the tuna but was significantly increased in the lineage preceding the billfish. Furthermore, there are a number of individual positively selected sites that, when mapped onto the COX crystal structure, appear to interact with other COX subunits and may affect OXPHOS function and regulation in billfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Notes

  1. All residues are numbered according to bovine COX and positively selected sites detected by PAML are identified by the amino acid present in billfish.

References

  • Adkins RM, Honeycutt RL (1994) Evolution of the primate cytochrome-c-oxidase subunit-II gene. J Mol Evol 38:215–231

    Article  CAS  PubMed  Google Scholar 

  • Adkins RM, Honeycutt RL, Disotell TR (1996) Evolution of eutherian cytochrome c oxidase subunit II: Heterogeneous rates of protein evolution and altered interaction with cytochrome c. Mol Biol Evol 13:1393–1404

    CAS  PubMed  Google Scholar 

  • Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    Article  CAS  PubMed  Google Scholar 

  • Arnold S, Lee I, Kim M, Song E, Linder D, Lottspeich F, Kadenbach B (1997) The subunit structure of cytochrome-c oxidase from tuna heart and liver. Eur J Biochem 248:99–103

    Article  CAS  PubMed  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman (1997) Short protocols in molecular biology, 3rd ed. John Wiley & Sons, New York

    Google Scholar 

  • Ballard JW, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744

    Article  PubMed  Google Scholar 

  • Blier PU, Dufresne F, Burton RS (2001) Natural selection and the evolution of mtDNA-encoded peptides: evidence for intergenomic co-adaptation. Trends Genet 17:400–406

    Article  CAS  PubMed  Google Scholar 

  • Block BA (1986) Structure of the brain and eye heater tissue in marlins, sailfish, and spearfish. J Morphol 190:169–189

    Article  CAS  PubMed  Google Scholar 

  • Block BA (1987) Billfish brain and eye heater: A new look at nonshivering heat production. News Physiol Sci 2:208–213

    Google Scholar 

  • Block BA (1994) Thermogenesis in muscle. Annu Rev Physiol 56:535–577

    Article  CAS  PubMed  Google Scholar 

  • Block BA, Finnerty JR (1994) Endothermy in fish: A phylogenetic analysis of constraints, predispositions, and selection pressures. Environ Biol Fish 40:283–302

    Article  Google Scholar 

  • Block BA, Finnerty JR, Stewart AF, Kidd J (1993) Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260:210–214

    CAS  PubMed  Google Scholar 

  • Brand MD, Couture P, Else PL, Withers KW, Hulbert AJ (1991) Evolution of energy metabolism. Proton permeability of the inner membrane of liver mitochondria is greater in a mammal than in a reptile. Biochem J 275:81–86

    CAS  PubMed  Google Scholar 

  • Brill RW (1996) Selective advantages conferred by the high performance physiology of tuna, billfish, and dolphin fish. Comp Biochem Physiol A Physiol 113:3–15

    Google Scholar 

  • Carey FG (1982) A brain heater in the swordfish. Science 216:1327–1329

    CAS  PubMed  Google Scholar 

  • Chen WJ, Bonillo C, Lecointre G (2003) Repeatability of clades as a criterion of reliability: a case study for molecular phylogeny of Acanthomorpha (Teleostei) with larger number of taxa. Mol Phylogenet Evol 26:262–288

    CAS  PubMed  Google Scholar 

  • Collette BB, Reeb C, Block BA (2001) Systematics of the tuna and mackerels (scombridae). In: Block BA, Stevens ED (eds) Tuna: Physiology, ecology, and evolution. Academic Press, San Diego, CA, pp 1–30

    Google Scholar 

  • Dalziel AC, Moore SE, Moyes CD (2005) Mitochondrial enzyme content in the muscles of high-performance fish: evolution and variation among fiber types. Am J Physiol Regul Integr Comp Physiol 288:R163–R172

    CAS  PubMed  Google Scholar 

  • Das J, Miller ST, Stern DL (2004) Comparison of diverse protein sequences of the nuclear-encoded subunits of cytochrome C oxidase suggests conservation of structure underlies evolving functional sites. Mol Biol Evol 21:1572–1582

    CAS  PubMed  Google Scholar 

  • Dickson KA (1996) Locomotor muscle of high-performance fish: What do comparisons of tuna with ectothermic sister taxa reveal? Comp Biochem Physiol 113:39–49

    Article  Google Scholar 

  • Dickson KA, Graham JB (2004) Evolution and consequences of endothermy in fish. Physiol Biochem Zool 77:998–1018

    Article  PubMed  Google Scholar 

  • Finnerty JR, Block BA (1995) Evolution of cytochrome-b in the scombroidei (Teleostei)— Molecular insights into billfish (Istiophoridae and Xiphiidae) relationships. Fish Bull 93:78–96

    Google Scholar 

  • Goglia F, Moreno M, Lanni A (1999) Action of thyroid hormones at the cellular level: the mitochondrial target. FEBS Lett 452:115–120

    Article  CAS  PubMed  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–36

    CAS  PubMed  Google Scholar 

  • Graham JB, Dickson KA (2001) Anatomical and physiological specializations for endothermy. In: Block BA, Stevens ED (eds) Tuna: Physiology, ecology, and evolution. Academic Press, San Diego, CA

  • Grossman LI, Wildman DE, Schmidt TR, Goodman M (2004) Accelerated evolution of the electron transport chain in anthropoid primates. Trends Genet 20:578–585

    Article  CAS  PubMed  Google Scholar 

  • Hofacker I, Schulten K (1998) Oxygen and proton pathways in cytochrome c oxidase. Proteins 30:100–107

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE, Ronquist F (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688

    PubMed  Google Scholar 

  • Huttemann M, Frank V, Kadenbach B (1999) The possible role of isoforms of cytochrome c oxidase subunit VIa in mammalian thermogenesis. Cell Mol Life Sci 55:1482–1490

    CAS  PubMed  Google Scholar 

  • Inoue JG, Miya M, Tsukamoto K, Nishida M (2001) A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Mol Phylogenet Evol 20:275–285

    CAS  PubMed  Google Scholar 

  • Jobson RW, Nielsen R, Laakkonen L, Wikstrom M, Albert VA (2004) Adaptive evolution of cytochrome c oxidase: Infrastructure for a carnivorous plant radiation. Proc Natl Acad Sci USA 101:18064–18068

    Article  CAS  PubMed  Google Scholar 

  • Kadenbach B (2003) Intrinsic and extrinsic uncoupling of oxidative phosphorylation. Biochim Biophys Acta 1604:77–94

    CAS  PubMed  Google Scholar 

  • Korsmeyer KE, Dewar H (2001) Tuna metabolism and energetics. In: Block BA, Stevens ED (eds) Tuna: Physiology, ecology, and evolution. Academic Press, San Diego, CA, pp 36–78

    Google Scholar 

  • Lanni A, Moreno M, Lombardi A, Goglia F (1998) 3,5-Diiodo-L-thyronine and 3,5,3′-triiodo-L-thyronine both improve the cold tolerance of hypothyroid rats, but possibly via different mechanisms. Pflugers Arch 436:407–14

    Article  CAS  PubMed  Google Scholar 

  • Marcinek DJ, Bonaventura J, Wittenberg JB, Block BA (2001) Oxygen affinity and amino acid sequence of myoglobins from endothermic and ectothermic fish. Am J Physiol Regul Integr Comp Physiol 280:R1123–R1133

    CAS  PubMed  Google Scholar 

  • Meunier B, Rich PR (1998) Second-site reversion analysis is not a reliable method to determine distances in membrane proteins: an assessment using mutations in yeast cytochrome c oxidase subunits I and II. J Mol Biol 283:727–730

    Article  CAS  PubMed  Google Scholar 

  • Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100:171–176

    Article  CAS  PubMed  Google Scholar 

  • Miya M, Takeshima H, Endo H, Ishiguro NB, Inoue JG, Mukai T, Satoh TP, Yamaguchi M, Kawaguchi A, Mabuchi K, Shirai SM, Nishida M (2003) Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. Mol Phylogenet Evol 26:121–138

    CAS  PubMed  Google Scholar 

  • Morrissette JM, Franck JP, Block BA (2003) Characterization of ryanodine receptor and Ca2+-ATPase isoforms in the thermogenic heater organ of blue marlin (Makaira nigricans). J Exp Biol 206:805–812

    Article  CAS  PubMed  Google Scholar 

  • Moyes CD, Mathieu-Costello OA, Brill RW, Hochachka PW (1992) Mitochondrial metabolism of cardiac and skeletal muscles from a fast (Katsuwonus pelamis) and a slow (Cyprinus carpio) fish. Can J Zool 70:1246–1253

    CAS  Google Scholar 

  • Nakamura I (1983) Systematics of the billfish (Xiphiidae and Istiophoridae). Publ Set Mar Biol Lab 28:255–396

    Google Scholar 

  • Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148:929–936

    CAS  PubMed  Google Scholar 

  • Overholtzer MH, Yakowec PS, Cameron V (1996) The effect of amino acid substitutions in the conserved aromatic region of subunit II of cytochrome c oxidase in Saccharomyces cerevisiae. J Biol Chem 271:7719–7724

    CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: Testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Potthoff T, Kelley S, Javech JC (1986) Cartilage and bone development in scombroid fish. Fish Bull 84:647–678

    Google Scholar 

  • Rahman S, Taanman JW, Cooper JM, Nelson I, Hargreaves I, Meunier B, Hanna MG, Garcia JJ, Capaldi RA, Lake BD, Leonard JV, Schapira AH (1999) A missense mutation of cytochrome oxidase subunit II causes defective assembly and myopathy. Am J Hum Genet 65:1030–1039

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2004) Tracer. Version 1.2.1. University of Oxford, Oxford

    Google Scholar 

  • Rand DM (2001) The units of selection on mitochondrial DNA. Annu Rev Ecol Syst 32:415–448

    Article  Google Scholar 

  • Rand DM, Haney RA, Fry AJ (2004) Cytonuclear coevolution: The genomics of cooperation. Trends Ecol Evol 19:645–653

    Article  Google Scholar 

  • Rawson PD, Burton RS (2002) Functional coadaptation between cytochrome c and cytochrome c oxidase within allopatric populations of a marine copepod. Proc Natl Acad Sci USA 99:12955–12958

    Article  CAS  PubMed  Google Scholar 

  • Richter OM, Ludwig B (2003) Cytochrome c oxidase––structure, function, and physiology of a redox-driven molecular machine. Rev Physiol Biochem Pharmacol 147:47–74

    CAS  PubMed  Google Scholar 

  • Roberts VA, Pique ME (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. J Biol Chem 274:38051–38060

    CAS  PubMed  Google Scholar 

  • Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303:223–226

    Article  CAS  PubMed  Google Scholar 

  • Schmidt B, McCracken J, Ferguson-Miller S (2003) A discrete water exit pathway in the membrane protein cytochrome c oxidase. Proc Natl Acad Sci USA 100:15539–15542

    CAS  PubMed  Google Scholar 

  • Schmidt TR, Wu W, Goodman M, Grossman LI (2001) Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase. Mol Biol Evol 18:563–569

    CAS  PubMed  Google Scholar 

  • Simmons MP, Miya M (2004) Efficiently resolving the basal clades of a phylogenetic tree using Bayesian and parsimony approaches: a case study using mitogenomic data from 100 higher teleost fish. Mol Phylogenet Evol 31:351–362

    CAS  PubMed  Google Scholar 

  • Smeitink J, van den Heuvel L, DiMauro S (2001) The genetics and pathology of oxidative phosphorylation. Nat Rev Genet 2:342–352

    Article  CAS  PubMed  Google Scholar 

  • Srere PA (1985) Organization of proteins within the mitochondrion. In: Welch GR (ed) Organized multienzyme systems. Catalytic properties. Academic Press, New York, London, pp 1–61

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (* and other methods). Sinauer, Sunderland, MA

    Google Scholar 

  • Szuplewski S, Terracol R (2001) The cyclope gene of Drosophila encodes a cytochrome c oxidase subunit VIc homolog. Genetics 158:1629–1643

    CAS  PubMed  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  • Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A. Science 272:1136–1144

    CAS  PubMed  Google Scholar 

  • Tullis A, Block BA, Sidell BD (1991) Activities of key metabolic enzymes in the heater organs of scombroid fish. J Exp Biol 161:383–403

    CAS  PubMed  Google Scholar 

  • White FC, Kelly R, Kemper S, Schumacker PT, Gallagher KR, Laurs RM (1988) Organ blood flow haemodynamics and metabolism of the albacore tuna Thunnus alalunga (Bonnaterre). Exp Biol 47:161–9

    CAS  PubMed  Google Scholar 

  • Willett CS, Burton RS (2003) Environmental influences on epistatic interactions: Viabilities of cytochrome c genotypes in interpopulation crosses. Evolution 57:2286–2292

    PubMed  Google Scholar 

  • Willett CS, Burton RS (2004) Evolution of interacting proteins in the mitochondrial electron transport system in a marine copepod. Mol Biol Evol 21:443–453

    CAS  PubMed  Google Scholar 

  • Yang Z (1993) Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol 10:1396–1401

    CAS  PubMed  Google Scholar 

  • Yang Z (1997) PAML: A program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555–556

    CAS  PubMed  Google Scholar 

  • Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568–573

    CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19:908–917

    CAS  PubMed  Google Scholar 

  • Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449

    CAS  PubMed  Google Scholar 

  • Yoshikawa S, Shinzawa-Itoh K, Nakashima R, Yaono R, Yamashita E, Inoue N, Yao M, Fei MJ, Libeu CP, Mizushima T, Yamaguchi H, Tomizaki T, Tsukihara T (1998) Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase. Science 280:1723–1729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank N. Fragoso, R. Brill (NMFS), M. Musyl (JIMAR), and Dr. T. M. Orrell of the NMFS/NOAA Systematics Laboratory (Smithsonian Institution, Washington, DC) for their assistance in providing samples and Dr. M. Miya for advice on compatible primer pairs. This work was funded by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (C.D.M.) and postgraduate scholarship (A.C.D.) and made possible by a research program funded by the Pelagic Fisheries Research Program (PFRP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne C. Dalziel.

Additional information

[Reviewing Editor: Dr. Rasmus Nielsen]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalziel, A.C., Moyes, C.D., Fredriksson, E. et al. Molecular Evolution of Cytochrome c Oxidase in High-Performance Fish (Teleostei: Scombroidei). J Mol Evol 62, 319–331 (2006). https://doi.org/10.1007/s00239-005-0110-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-005-0110-7

Keywords

Navigation