Abstract
Myoglobin (Mb) is an oxygen-binding hemoprotein that was once thought to be exclusively expressed in oxidative myocytes of skeletal and cardiac muscle where it serves in oxygen storage and facilitates intracellular oxygen diffusion. In this study, we cloned the coding sequence of the Mb gene from four species, representing three groups, of the schizothoracine fish endemic to the Qinghai-Tibetan Plateau (QTP), then conducted molecular evolution analyses. We also investigated tissue expression patterns of Mb and the expression response to moderate and severe hypoxia at the mRNA and protein levels in a representative of the highly specialized schizothoracine fish species, Schizopygopsis pylzovi. Molecular evolution analyses showed that Mb from the highly specialized schizothoracine fish have undergone positive selection and one positively selected residue (81L) was identified, which is located in the F helix, close to or in contact with the heme. We present tentative evidence that the Mb duplication event occurred in the ancestor of the schizothoracine and Cyprininae fish (common carp and goldfish), and that the Mb2 paralog was subsequently lost in the schizothoracine fish. In S. pylzovi, Mb mRNA is expressed in various tissues with the exception of the intestine and gill, but all such tissues, including the liver, muscle, kidney, brain, eye, and skin, expressed very low levels of Mb mRNA (< 8.0%) relative to that of the heart. The trace levels of Mb expression in non-muscle tissues are perhaps the major reason why non-muscle Mb remained undiscovered for so long. The expression response of the Mb gene to hypoxia at the mRNA and protein levels was strikingly different in S. pylzovi compared to that found in the common carp, medaka, zebrafish, and goldfish, suggesting that the hypoxia response of Mb in fish may be species and tissue-specific. Notably, severe hypoxia induced significant expression of Mb at the mRNA and protein levels in the S. pylzovi heart, which suggests Mb has a major role in the supply of oxygen to the heart of Tibetan Plateau fish.
Similar content being viewed by others
References
Avivi A, Gerlach F, Joel A, Reuss S, Burmester T, Nevo E, Hankeln T (2010) Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc Natl Acad Sci USA 107(50):21570–21575. https://doi.org/10.1073/pnas.1015379107
Brunori M (2001) Nitric oxide moves myoglobin centre stage. Trends Biochem Sci 26(4):209–210. https://doi.org/10.1016/S0968-0004(01)01824-2
Burmester T, Weich B, Reinhardt S, Hankeln T (2000) A vertebrate globin expressed in the brain. Nature 407(6803):520–523. https://doi.org/10.1038/35035093
Cao WX, Chen YY, Wu YF, Zhu SQ (1981) Origin and evolution of schizothoracine fishes in relation to the upheaval of the Xizang Plateau, in Collection in studies on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau in: the team of the comprehensive scientific expedition to the Qinghai-Xizang Plateau CAoS (ed) studies on the period, amplitude and type of the uplift of the Qinghai-Xizang Plateau. Science Press, Beijing, pp 118–130
Cao YB, Chen XQ, Wang S, Wang YX, Du JZ (2008) Evolution and regulation of the downstream gene of hypoxia-inducible factor-1alpha in naked carp (Gymnocypris przewalskii) from Lake Qinghai, China. J Mol Evol 67(5):570–580. https://doi.org/10.1007/s00239-008-9175-4
Capossela KM, Brill RW, Fabrizio MC, Bushnell PG (2012) Metabolic and cardiorespiratory responses of summer flounder Paralichthys dentatus to hypoxia at two temperatures. J Fish Biol 81(3):1043–1058. https://doi.org/10.1111/j.1095-8649.2012.03380.x
Chen YF, Cao WY (2000) Schizothoracinae. In: Yue PQ (ed) Fauna Sinica, Osteichthyes, Cypriniformes III. Science Press, Beijing, pp 273–390
Cossins AR, Crawford DL (2005) Fish as models for environmental genomics. Nat Rev Genet 6(4):324–333. https://doi.org/10.1038/nrg1590
Cossins AR, Williams DR, Foulkes NS, Berenbrink M, Kipar A (2009) Diverse cell-specific expression of myoglobin isoforms in brain, kidney, gill and liver of the hypoxia-tolerant carp and zebrafish. J Exp Biol 212(5):627–638. https://doi.org/10.1242/jeb.026286
Fraser J, Vieira de Mello L, Ward D, Rees HH, Williams DR, Fang Y, Brass A, Gracey AY, Cossins AR (2006) Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc Natl Acad Sci USA 103(8):2977–2981. https://doi.org/10.1073/pnas.0508270103
Gracey AY, Troll JV, Somero GN (2001) Hypoxia-induced gene expression profiling in the euryoxic fish Gillichthys mirabilis. Proc Natl Acad Sci USA 98(4):1993–1998. https://doi.org/10.1073/pnas.98.4.1993
Guan L, Chi W, Xiao W, Chen L, He S (2014) Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan Plateau in the evolution of schizothoracine fish. BMC Evol Biol 14(1):192. https://doi.org/10.1186/s12862-014-0192-1
Duplicated gene evolution following whole-genome duplication in teleost fish. In Friedberg F (ed) Gene duplication. InTech, Rijeka, Croatia. https://doi.org/10.5772/22039
Hardison RC (1996) A brief history of hemoglobins: plant, animal, protist, and bacteria. Proc Natl Acad Sci USA 93(12):5675–5679. https://doi.org/10.1073/pnas.93.12.5675
Helbo S, Dewilde S, Williams DR, Berghmans H, Berenbrink M, Cossins AR, Fago A (2012) Functional differentiation of myoglobin isoforms in hypoxia-tolerant carp indicates tissue-specific protective roles. Am J Physiol Regul Integr Comp Physiol 302:R693-701. https://doi.org/10.1152/ajpregu.00501.2011
Holland PW, Garcia-Fernandez J, Williams NA, Sidow A (1994) Gene duplications and the origins of vertebrate development. Dev Suppl 125–133. https://www.ncbi.nlm.nih.gov/pubmed/7579513
Hoppeler H, Vogt M (2001) Muscle tissue adaptations to hypoxia. J Exp Biol 204(Pt 18):3133–3139
Huang X, Boxer SG (1994) Discovery of new ligand binding pathways in myoglobin by random mutagenesis. Nat Struct Biol 1(4):226–229. https://doi.org/10.1038/nsb0494-226
Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biémont C, Skalli Z, Cattolico L, Poulain J, de Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigó R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quétier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H (2004) Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431(7011):946–957. https://doi.org/10.1038/nature03025
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(Web Server):W5–W9. https://doi.org/10.1093/nar/gkn201
Kanatous SB, Mammen PP, Rosenberg PB, Martin CM, White MD, Dimaio JM, Huang G, Muallem S, Garry DJ (2009) Hypoxia reprograms calcium signaling and regulates myoglobin expression. Am J Physiol Cell Physiol 296(3):C393–C402. https://doi.org/10.1152/ajpcell.00428.2008
Lambright DG, Balasubramanian S, Boxer SG (1989) Ligand and proton exchange dynamics in recombinant human myoglobin mutants. J Mol Biol 207(1):289–299. https://doi.org/10.1016/0022-2836(89)90456-7
Levine BD, Stray-Gundersen J (2001) The effects of altitude training are mediated primarily by acclimatization, rather than by hypoxic exercise. Adv Exp Med Biol 502:75–88. https://doi.org/10.1007/978-1-4757-3401-0_7
Li Y, Ren Z, Shedlock AM, Wu J, Sang L, Tersing T, Hasegawa M, Yonezawa T, Zhong Y (2013) High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by the mitochondrial genome analyses. Gene 517(2):169–178. https://doi.org/10.1016/j.gene.2012.12.096
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Nery MF, Arroyo JI, Opazo JC (2013) Accelerated evolutionary rate of the myoglobin gene in long-diving whales. J Mol Evol 76(6):380–387. https://doi.org/10.1007/s00239-013-9572-1
Nikinmaa M (2001) Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia. Respir Physiol 128(3):317–329. https://doi.org/10.1016/S0034-5687(01)00309-7
Nikinmaa M (2002) Oxygen-dependent cellular functions--why fishes and their aquatic environment are a prime choice of study. Comp Biochem Physiol A Mol Integr Physiol 133(1):1–16. https://doi.org/10.1016/S1095-6433(02)00132-0
Nikinmaa M, Rees BB (2005) Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol 288(5):R1079–R1090. https://doi.org/10.1152/ajpregu.00626.2004
Nilsson GE (2007) Gill remodeling in fish--a new fashion or an ancient secret? J Exp Biol 210(14):2403–2409. https://doi.org/10.1242/jeb.000281
Opazo JC, Butts GT, Nery MF, Storz JF, Hoffmann FG (2013) Whole-genome duplication and the functional diversification of teleost fish hemoglobins. Mol Biol Evol 30(1):140–153. https://doi.org/10.1093/molbev/mss212
Ostermann A, Waschipky R, Parak FG, Nienhaus GU (2000) Ligand binding and conformational motions in myoglobin. Nature 404(6774):205–208. https://doi.org/10.1038/35004622
Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818. https://doi.org/10.1093/bioinformatics/14.9.817
Qi D, Chao Y, Guo S, Zhao L, Li T, Wei F, Zhao X (2012) Convergent, parallel and correlated evolution of trophic morphologies in the subfamily schizothoracinae from the Qinghai-Tibetan plateau. PLoS One 7(3):e34070. https://doi.org/10.1371/journal.pone.0034070
Roesner A, Hankeln T, Burmester T (2006) Hypoxia induces a complex response of globin expression in zebrafish (Danio rerio). J Exp Biol 209(11):2129–2137. https://doi.org/10.1242/jeb.02243
Roesner A, Mitz SA, Hankeln T, Burmester T (2008) Globins and hypoxia adaptation in the goldfish, Carassius auratus. FEBS J 275(14):3633–3643. https://doi.org/10.1111/j.1742-4658.2008.06508.x
Saitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K, Nishida M, Miya M (2006) Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world's largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63(6):826–841. https://doi.org/10.1007/s00239-005-0293-y
Saroglia M, Cecchini S, Terova G, Caputo A, De Stradis A (2000) Influence of environmental temperature and water oxygen concentration on gas diffusion distance in sea bass (Dicentrarchus labrax L.) Fish Physiol Biochem 23:55–58
Saroglia M, Terova G, De Stradis A, Caputo A (2002) Morphometric adaptations of sea bass gills to different dissolved oxygen partial pressures. J Fish Biol 60(6):1423–1430. https://doi.org/10.1111/j.1095-8649.2002.tb02437.x
Schreiter ER, Rodriguez MM, Weichsel A, Montfort WR, Bonaventura J (2007) S-nitrosylation-induced conformational change in blackfin tuna myoglobin. J Biol Chem 282(27):19773–19780. https://doi.org/10.1074/jbc.M701363200
Schrodinger LLC (2010) The PyMOL Molecular Graphics System, Version 1.7.0.1
Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6(6):715–722. https://doi.org/10.1016/S0959-437X(96)80026-8
Smith RW, Houlihan DF, Nilsson GE, Brechin JG (1996) Tissue-specific changes in protein synthesis rates in vivo during anoxia in crucian carp. Am J Phys 271:R897–R904
Sollid J, De Angelis P, Gundersen K, Nilsson GE (2003) Hypoxia induces adaptive and reversible gross morphological changes in crucian carp gills. J Exp Biol 206(20):3667–3673. https://doi.org/10.1242/jeb.00594
Sollid J, Weber RE, Nilsson GE (2005) Temperature alters the respiratory surface area of crucian carp Carassius carassius and goldfish Carassius Auratus. J Exp Biol 208(6):1109–1116. https://doi.org/10.1242/jeb.01505
Sun Y, Jin K, Mao XO, Zhu Y, Greenberg DA (2001) Neuroglobin is up-regulated by and protects neurons from hypoxic-ischemic injury. Proc Natl Acad Sci U S A 98(26):15306–15311. https://doi.org/10.1073/pnas.251466698
Swofford DL (2000) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Massachusetts: Sinauer, Sunderland
Ton C, Stamatiou D, Liew CC (2003) Gene expression profile of zebrafish exposed to hypoxia during development. Physiol Genomics 13(2):97–106. https://doi.org/10.1152/physiolgenomics.00128.2002
Tzaneva V, Bailey S, Perry SF (2011) The interactive effects of hypoxemia, hyperoxia, and temperature on the gill morphology of goldfish (Carassius auratus). Am J Physiol Regul Integr Comp Physiol 300(6):R1344–R1351. https://doi.org/10.1152/ajpregu.00530.2010
Wawrowski A, Gerlach F, Hankeln T, Burmester T (2011) Changes of globin expression in the Japanese medaka (Oryzias latipes) in response to acute and chronic hypoxia. J Comp Physiol B 181(2):199–208. https://doi.org/10.1007/s00360-010-0518-2
Wittenberg JB, Wittenberg BA (2003) Myoglobin function reassessed. J Exp Biol 206(12):2011–2020. https://doi.org/10.1242/jeb.00243
Wu YF, Wu CZ (1992) The fishes of the Qinghai-Xizang plateau. Science and Technology Press, Chengdu
Wunderlich C, Flogel U, Godecke A, Heger J, Schrader J (2003) Acute inhibition of myoglobin impairs contractility and energy state of iNOS-overexpressing hearts. Circ Res 92(12):1352–1358. https://doi.org/10.1161/01.RES.0000079026.70629.E5
Xia MZ, Chao Y, Jia JL, Li CZ, Kong QH, Zhao YL, Guo SC, Qi DL (2016) Changes of hemoglobin expression in response to hypoxia in a Tibetan schizothoracine fish, Schizopygopsis pylzovi. J Comp Physiol B 186(8):1033–1043. https://doi.org/10.1007/s00360-016-1013-1
Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. https://doi.org/10.1093/molbev/msm088
Yang ZH, Nielsen R (2002) Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19(6):908–917. https://doi.org/10.1093/oxfordjournals.molbev.a004148
Yang Z, Wong WS, Nielsen R (2005) Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol 22(4):1107–1118. https://doi.org/10.1093/molbev/msi097
Zhang JZ, Nielsen R, Yang ZH (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22(12):2472–2479. https://doi.org/10.1093/molbev/msi237
Zhao ZX, Xu P, Cao DC, Kuang YY, Deng HX, Zhang Y, Xu LM, Li JT, Xu J, Sun XW (2014) Duplication and differentiation of common carp (Cyprinus carpio) myoglobin genes revealed by BAC analysis. Gene 548(2):210–216. https://doi.org/10.1016/j.gene.2014.07.034
Acknowledgements
We would like to thank the native English speaking scientists of Elixigen Company (Huntington Beach, California) for editing our manuscript.
Funding
This work was supported by grants to D. Qi from the National Natural Science Foundation of China (31460094) and the Natural Science Foundation of Qinghai Science & Technology Department in China (2015-ZJ-901).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
All research involving animals in this study followed the bylaws for experiments on animals and was approved by the Animal Care and Use Committee of Qinghai University. All specimens were collected as live specimens from their habitats with the permission of the Wild Animal and Plant Protection Station of Qinghai Province and Autonomous Region, China.
Rights and permissions
About this article
Cite this article
Qi, D., Chao, Y., Zhao, Y. et al. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia. Fish Physiol Biochem 44, 557–571 (2018). https://doi.org/10.1007/s10695-017-0453-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10695-017-0453-1