Synopsis
Endothermy, the ability to raise body temperature by internal heat production, is unusual in teleost fishes and has only been documented within one suborder, the Scombroidei. Two separate modes of endothermy have evolved in the scombroidei; tunas warm their muscles, brain and viscera using heat exchangers in the circulation to these metabolically active tissues while billfishes and one primitive mackerel have a thermogenic organ situated beneath the brain. Both modes of endothermy emphasize common themes. Large body size coupled with heat exchangers are necessary to reduce convective and conductive heat exchange. A tissue with a high oxidative capacity is required for heat generation. Studies based upon morphology and mitochondrial DNA analyses indicate that endothermy has evolved independently at least three times within the scombroid lineage. Mapping of-morphological and physiological traits on a molecular phylogeny for scombroids provides evidence of selective pressures favoring evolution of diverse endothermic styles. The new results suggest anatomical constraints prevent most fish from using the tuna form of endothermy and indicate a possible linkage between endothermy and locomotory style (thunniform or sub-carangiform).
Similar content being viewed by others
References cited
Alexander, R.M. 1969. The orientation of muscle fibres in the myotomes of fishes. J. Mar. Biol. Assoc. U.K. 49: 263–290.
Bach-y-Rita, R. & F. Ito. 1966. In vivo studies of fast and slow muscle fibers in cat extraocular muscle. J. Gen. Physiol. 49: 1177–1198.
Baker, M.A. 1982. Brain cooling in endotherms in heat and exercise. Annual. Rev. Physiol. 44: 85–96.
Ballantyne, J.S., M.E. Chamberlin & T.D. Singer. 1992. Oxidative metabolism in thermogenic tissues of swordfish and mako shark. J. Exp. Zool. 261: 110–114.
Bennett, A.F. & J.A. Ruben. 1979. Endothermy and activity in vertebrates. Science 206: 649–653.
Block, B.A. 1986. Structure of the brain and eye heater tissue in marlins, sailfish, and spearfishes. J. Morph. 190: 169–189.
Block, B.A. 1987. Billfish brain and eye heater: a new look at nonshivering heat production. News in Physiological Sciences 2: 208–213.
Block, B.A. 1990. Phylogeny and ecology of brain and eye heaters in billfishes. pp. 123–136.In: R.H. Stroud (ed.) Planning the Future of Billfishes, National Coalition for Marine Conservation, Savannah.
Block, B.A. 1991. Endothermy in fish: thermogenesis, ecology and evolution. pp. 269–311.In: P.W. Hochachka & T. Mommsen (ed.) Biochemistry and Molecular Biology of Fishes, Vol 1, Elsevier, New York.
Block, B.A. 1994. Thermogenesis in muscle. Annual Reviews of Physiology. 56: 535–577.
Block, B.A. & F.G. Carey. 1985. Warm brain and eye temperatures in sharks. J. Comp. Physiol. B. 156: 229–236.
Block, B.A. & C. Franzini-Armstrong. 1988. The structure of the membrane systems in a novel muscle cell modified for heat production. J. Cell Biol. 107: 1099–1112.
Block, B.A., J.D. Finnerty, A.F.R. Stewart & J. Kidd. 1993. Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science 260: 210–214.
Bone, Q. 1966. On the function of the two types of myotomal muscle fibres in elasmobranch fish. J. Mar. Biol. Assoc. U.K. 46: 321–349.
Bone, Q. 1971. On the scabbard fish,Aphanopus carbo. J. Mar. Biol. Assoc. U.K. 51: 219–225.
Bone, Q. & A.D. Chubb. 1983. The retial system of the locomotor muscles in the thresher shark. J. Mar. Biol. Assoc. U.K. 63: 239–241.
Brooks, D.R. & D.A. Maclennan. 1991. Phylogeny, ecology, and behavior. A research program in comparative biology. University of Chicago Press, Chicago. 434 pp.
Brill, R.W., D.L. Guernsey & E.D. Stevens. 1978. Body surface and gill heat loss rates in restrained skipjack tuna. pp. 261–276.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Brill, R.W, H. Dewar & J.B. Graham. 1994. Basic concepts relevant and gill heat loss rates in restrained skipjack tuna. to heat transfer in fishes, and their use in measuring the physiological thermoregulatory abilities of tunas. Env. Biol. Fish. (in press).
Bushnell, P.G., D.R. Jones & A.P. Farrell. 1992. The arterial system. pp. 89–139.In: W.S. Hoar, D.J. Randall & A.P. Farrell (ed) Fish Physiology, Vol 12, Academic Press, San Diego.
Carey, F.G. 1982a. Warm fish. pp. 216–233.In: C.R. Taylor, K. Kohansen & L. Bolis (ed.) A Companion to Animal Physiology, Cambridge University Press, Cambridge.
Carey, F.G. 1982b. A brain heater in the swordfish. Science 216: 1327–1329.
Carey, F.G. 1990. Further observations on the biology of the swordfish. pp. 103–122.In: R.H. Stroud (ed.) Planning the Future of Billfishes, National Coalition for Marine Conservation, Savannah.
Carey, F.G. & J.M. Teal. 1966. Heat conservation in tuna fish muscle. Proc. Natl. Acad. Sci. U.S.A. 56: 1464–1469.
Carey, F.G., J.M. Teal, J.W. Kanwisher & K.D. Lawson. 1971. Warm-bodied fish. Amer. Zool. 11: 137–145.
Carey, F.G., J.M. Teal & J.W. Kanwisher. 1981. The visceral temperatures of mackerel sharks. Physiol. Zool. 54: 334–344.
Carey, F.G., J.G. Casey, H.L. Pratt, D. Urkuhart & J.E. McCosker. 1985. Temperature, heat production and heat exchange in lamnid sharks. Memoirs of the Southern California Academy of Science 9: 92–108.
Carey, F.G. & Q. Gibson. 1987. Blood flow in the muscle of free-swimming fish. Physiol. Zool. 60: 138–148.
Carey, F.G. & J.V. Scharold. 1990. Movements of blue sharks in course and depth. Mar. Biol. 106: 329–342.
1978. Adaptations and systematics of the mackerels and tunas. pp. 7–40.In: G.D. Sharp & A.E. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Collette, B.B., T. Potthoff, W.J. Richards, S. Ueyanagi, J.L. Russo & Y. Nishikawa. 1984. Scombroidei: development and relationships. pp. 591–620.In: H.G. Moser et al. (ed.) Ontogeny and Systematics of Fishes, Special Publication No. 1, American Society of Ichthyologists and Herpetologists, Lawrence
Compagno, L.G.V. 1984. Sharks of the world. FAO Fisheries Synopsis No. 125, 4: 1–655.
Crompton, A.W, C.R. Taylor & J.A. Jagger. 1978. Evolution of homeothermy in mammals. Nature 272: 333–336.
Dean, J.M. 1976. Temperature of tissues in freshwater fishes. Trans. Amer. Fish. Soc. 6: 709–711.
Denton, R.M. & J.G. McCormack. 1990. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Ann. Rev. Physiol. 52: 451–466.
Dickson, K.A. 1988. Why are some fishes endothermic? Inter-specific comparisons of aerobic and anerobic metabolic capacities in endothermic and ectothermic scombrids. Ph.D. Dissertation, University of California, San Diego. 358 pp.
Dickson, K.A., A.V. Dall, J.M. Eisman, E.T. McDonnell & A.M. Hendrzak. 1988. Biochemical indices of aerobic and anaerobic capacity in red and white myotomal muscle of active, pelagic sharks: comparisons between endothermic and ectothermic species. Journal of the Pennsylvania Academy of Science 62 (3): 147–151.
Dickson, K.A. 1994. Unique adaptations of the metabolic biochemistry of tunas and billfishes for life in the pelagic environment. Env. Biol. Fish. (in press).
Finnerty, J.R. & B.A. Block. Evolution of cytochrome b in Scombroidei (Teleostei); insights into billfish relationships. U.S. Fish. Bull. (in press).
Gibbs, R.H. & B.B. Collette. 1967. Comparative anatomy and systematics of the tunas, genusThunnus. U.S. Fish Bull. 66: 65–130.
Graham, J.B. 1975. Heat exchange in the yellowfin tuna,Thunnus albacares, and skipjack tuna,Katsuwonus pelamis, and the adaptive significance of elevated body temperatures in scombrid fishes. U.S. Fish. Bull. 73: 219–229.
Graham, J.B. 1983. Heat transfer. pp. 248–279.In: P.W. Webb & D. Weihs (ed.) Fish Biomechanics, Praeger Publishers, New York.
Graham, J.B., F.J. Koehrn & K.A. Dickson. 1983. Distribution and relative proportions of red muscle in scombrid fishes: consequences of body size and relationships to locomotion and endothermy. Can. J. Zool. 61: 2087–2096.
Guppy, M., W.C. Hulbert & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. II. Enzyme and metabolite profiles. J. Exp. Biol. 82: 303–320.
Hebrank, J.H., M.R. Hebrank, J.H. Long, B.A. Block & S.A. Wainwright. 1990. Backbone mechanics of the blue marlinMakaira nigricans (Pisces, Istiophoridae). J. Exp. Biol. 148: 449–459.
Himms-Hagen, J. 1991. Brown adipose tissue thermogenesis: interdisciplinary studies. FASEB J. 4: 2890–2898.
Hochachaka, P.W. & R.W. Brill. 1987. Autocatalytic pathways to cell death: a new analysis of the tuna burn problem. Fish Physiol. Biochem. 4: 81–87.
Holland, K.N., R.W. Brill, R.K.C. Chang, J.R. Sibert & D.A. Fournier. 1992. Physiological and behavioral thermoregulation in bigeye tune (Thunnus obesus) Nature 358: 410–412.
Huey, R.B. 1987. Phylogeny, history, and the comparative method. pp. 76–98.In: M.E. Feder, A.F. Bennett, W.W. Burggren & R.B. Huey (ed.) New Directions in Physiological Ecology, Cambridge University Press, Cambridge
Hulbert, W.C., M. Guppy, B. Murphy & P.W. Hochachka. 1979. Metabolic sources of heat and power in tuna muscles. I. Muscle fine structure. J. Exp. Biol. 82: 289–301.
Johnson, G.D. 1986. Scombroid phylogeny: an alternative hypothesis. Bull. Mar. Sci. 39: 1–41.
Lindsey, C.C. 1978. Form, function, and locomotory habits in fish. pp. 1–100.In: W.S. Hoar & D.J. Randall (ed.) Fish Physiology, Vol. 7, Academic Press, New York.
Linthicum, D.S. & F.G. Carey. 1971. Regulation of brain and eye temperatures by the bluefin tuna. Comp. Biochem. Physiol. 43A: 425–433.
Maddison, W.P. & D.R. Maddison. 1992. MacClade: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland. 398 pp.
Martin, A.P, G.J.P. Naylor & S.R. Palumbi. 1992. Rates of mitochondrial DNA evolution in sharks are slow compared with mammals. Nature 357: 153–155.
MacClennan, D.H. & M.S. Phillips. 1992. Malignant hyperthermia. Science 256: 789–794.
Moyes, C.D., O.A. Mathieu-Costello, R.W. Brill & P.W. Hochachka. 1992. Can. J. Zool. 70: 1246–1253.
Neill, W.H. & E.D. Stevens. 1974. Thermal inertia versus thermoregulation in ‘warm’ turtles and tunas. Science 184: 1008–1010.
Neill, W.H., R.K. Chang & A.E. Dizon. 1976. Magnitude and ecological importance of thermal inertia in skipjack tuna,Katsuwonnus pelamis (Linneaus). Env. Biol. Fish. 1: 61–80.
O'Brien, J., A. Tullis & B.A. Block. 1992. Role of mitochondria in heat production by a muscle derived thermogenic organ in fish. Biophys. J. 61: A297.
O'Brien, J., G. Meissner & B.A. Block. 1994. The fastest contracting muscles of non-mammalian vertebrates express only one isoform of the ryanodine receptor. Biophysical J. 65: 2418–2427.
Prosser, C.L. & C.O. Nelson. 1981. The role of nervous systems in temperature adaptation of poikilotherms. Ann. Rev. Physiol. 43: 281–300.
Rayner, M.D. & M.J. Keenan. 1967. Role of red and white muscles in the swimming of skipjack tuna. Nature 214: 392–393.
Ridley, M. 1983. The explanation of organic diversity: the comparative method and adaptations for mating. Clarendon Press, Oxford. 272 pp.
Rome, L.C., R.P. Funke, R.M. Alexander, G. Lutz, H.D.J.N. Aldridge, F. Scott & M. Freadman. 1988. Why animals have different muscle fiber types. Nature 355: 824–827.
Sharp, G.D. & S.W. Pirages. 1978. The distribution of red and white swimming muscle, their biochemistry and the biochemistry phylogeny of selected scombrid fishes. pp. 41–78.In: G. Sharp & A. Dizon (ed.) The Physiological Ecology of Tunas, Academic Press, New York.
Sidell, B.D. & T.S. Moerland. 1989. Effects of temperature on muscular function and locomotory performance in teleost fish. pp. 115–156.In: C. Magnum (ed.) Advances in Comparative and Environmental Physiology, Vol. 5, Springer-Verlag, Berlin.
Sidell, B.D., W.R. Driedzic, D.B. Stowe & I.A. Johnston. 1987. Biochemical correlations of power development and metabolic fuel preferenda in fish hearts. Physiol. Zool. 60: 221–232.
Stevens, E.D. & F.E. Fry. 1971. Brain and muscle temperatures in ocean caught and captive skipjack tuna. Comp. Biochem. Physiol. 1971: 203–211.
Stevens, E.D. & F. G. Carey. 1981. One why of the warmth of warm-bodied fish. Amer. J. Physiol. 240: R151–R155.
Suarez, R.K., M.D. Mallet, C. Daxboeck & P.W. Hochachka. 1986. Enzymes of energy metabolism and gluconeogenesis in the Pacific blue marlin,Makaira nigricans. Can. J. Zool. 64: 694–697.
Tullis, A., B.A. Block & B.D. Sidell. 1991. Activities of key metabolic enzymes in the heater organs of scombroid fishes. J. Exp. Biol. 161: 383–403.
Tullis, A. & B.a. Block. 1992. On the origin of the billfish heater cell phenotype. Amer. Zool. 32: 68A.
Watson, C., R.E. Bourke & R.W. Brill. 1988. A comprehensive theory on the etiology of burnt tuna. U.S. Fish. Bull. 86: 372–376.
Westneat, M.W. W. Hoese, C.A. Pell & S.A. Wainwright. 1993. Locomotor mechanisms of force transfer in the horizontal septum of scombrid fishes. J. Morphol. 217: 183–204.
White, F.C., R. Kelly, S. Demper, P.T. Schumacker, K.R. Gallagher & R.M. Laurs. 1988. Organ blood flow hemnodynamics and metabolism of the albacore tunaThunnus alalunga (Bonnaterre). Exp. Biol. 47: 161–169.
Wolf, N.G., P.R. Swift & F.G. Carey. 1988. Swimming muscle helps warm the brain of lamnid sharks. J. Comp. Physiol. B. 157: 709–715.
Author information
Authors and Affiliations
Additional information
Paper from the International Union of Biological Societies symposium ‘The biology of tunas and billfishes: an examination of life on the knife edge’, organized by Richard W. Brill and Kim N. Holland.
Rights and permissions
About this article
Cite this article
Block, B.A., Finnerty, J.R. Endothermy in fishes: a phylogenetic analysis of constraints, predispositions, and selection pressures. Environ Biol Fish 40, 283–302 (1994). https://doi.org/10.1007/BF00002518
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1007/BF00002518