Abstract
Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).
Similar content being viewed by others
References
Arnold, V.I.: Sur la géometrie différentielle des groupes de Lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319 (1966)
Barton, P.T., Deiterding, R., Meiron, D., Pullin, D.: Eulerian adaptive finite-difference method for high-velocity impact and penetration problems. J. Comput. Phys. 240, 76–99 (2013)
Barton, P.T., Drikakis, D., Romenski, E.I.: An Eulerian finite-volume scheme for large elastoplastic deformations in solids. Int. J. Numer. Methods Eng. 81(4), 453–484 (2010)
Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. Oxford University Press, Oxford (2007)
Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems: With Internal Microstructure. Oxford University Press, Oxford (1994)
Bobylev, A.: The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Akademiia Nauk SSSR Doklady 262, 71–75 (1982)
Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplément aires pour les systémes hyperboliques. C. R. Acad. Sci. Paris Sér A 278, 909–912 (1974)
Boillat, G.: Involutions des systems conservatif. C. R. Acad. Sci. Paris 307, 891–894 (1988)
Bolmatov, D., Brazhkin, V.V., Trachenko, K.: Thermodynamic behaviour of supercritical matter. Nat. Commun. 4, 2331 (2013)
Bolmatov, D., Zav’yalov, D., Zhernenkov, M., Musaev, E.T., Cai, Y.Q.: Unified phonon-based approach to the thermodynamics of solid, liquid and gas states. Ann. Phys. 363, 221–242 (2015). https://doi.org/10.1016/j.aop.2015.09.018
Bolmatov, D., Zhernenkov, M., Zav’yalov, D., Stoupin, S., Cai, Y.Q., Cunsolo, A.: Revealing the mechanism of the viscous-to-elastic crossover in liquids. J. Phys. Chem. Lett. 6(15), 3048–3053 (2015)
Bolmatov, D., Zhernenkov, M., Zav’yalov, D., Stoupin, S., Cunsolo, A., Cai, Y.Q.: Thermally triggered phononic gaps in liquids at THz scale. Sci. Rep. 6(November 2015), 19469 (2016). https://doi.org/10.1038/srep19469. http://www.nature.com/articles/srep19469
Boscheri, W., Dumbser, M., Loubère, R.: Cell centered direct Arbitrary–Lagrangian–Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity. Comput. Fluids 134–135, 111–129 (2016). https://doi.org/10.1016/j.compfluid.2016.05.004. http://linkinghub.elsevier.com/retrieve/pii/S004579301630144X
Brazhkin, V.V., Fomin, Y.D., Lyapin, A.G., Ryzhov, V.N., Trachenko, K.: Two liquid states of matter: a dynamic line on a phase diagram. Phys. Rev. E 85(3), 31,203 (2012)
Clebsch, A.: Über die Integration der hydrodynamische Gleichungen. J. Reine Angew. Math. 56, 1–10 (1859). Please confirm the inserted page range for reference [15]
Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016). https://doi.org/10.1016/j.jcp.2016.02.015. http://www.sciencedirect.com/science/article/pii/S0021999116000693
Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics. J. Computat. Phys. 348, 298–342 (2017). https://doi.org/10.1016/j.jcp.2017.07.020. http://www.sciencedirect.com/science/article/pii/S0021999117305284
Dupret, F., Marchal, J.: Loss of evolution in the flow of viscoelastic fluids. J. Nonnewton. Fluid Mech. 20, 143–171 (1986)
Dzyaloshinskii, I.E., Volovick, G.E.: Poisson brackets in condensed matter physics. Ann. Phys. 125(1), 67–97 (1980). https://doi.org/10.1016/0003-4916(80)90119-0
Romenski, E.I.: Thermodynamics and balance laws for processes of inelastic deformations. In: Proceedings “WASCOM 2001” 11th Conference on Waves and Stability in Continuous Media, pp. 484–495. World Scientific, Singapore (2002)
Esen, O., Pavelka, M., Grmela, M.: Hamiltonian coupling of electromagnetic field and matter. Int. J. Adv. Eng. Sci. Appl. Math. (2017). https://doi.org/10.1007/s12572-017-0179-4
Favrie, N., Gavrilyuk, S.: Dynamics of shock waves in elastic–plastic solids. ESAIM Proc. 30, 50–67 (2011). https://doi.org/10.1051/proc/201133005
Favrie, N., Gavrilyuk, S.: A rapid numerical method for solving Serre–Green–Naghdi equations describing long free surface gravity waves. Nonlinearity 30(7), 2718–2736 (2017). https://doi.org/10.1088/1361-6544/aa712d. http://stacks.iop.org/0951-7715/30/i=7/a=2718?key=crossref.139c98587b84970534e28823dcd579eb
Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge (2006). https://books.google.de/books?id=vQR0mN1dgUEC
Frenkel, J.: Kinetic Theory of Liquids. Dover, New York (1955)
Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11(3), 333–418 (1958)
Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. 68(8), 1686–1688 (1971)
Gavrilyuk, S.L., Makarenko, N.I., Sukhinin, S.V.: Waves in Continuous Media. Lecture Notes in Geosystems Mathematics and Computing. Springer, New York (2017)
Godunov, S., Mikhailova, T., Romenskii, E.: Systems of thermodynamically coordinated laws of conservation invariant under rotations. Siberian Mathematical Journal 37(4), 690–705 (1996)
Godunov, S., Peshkov, I.: Thermodynamically consistent nonlinear model of elastoplastic Maxwell Medium. Computational Mathematics and Mathematical Physics 50(8), 1409–1426 (2010). https://doi.org/10.1134/S0965542510080117
Godunov, S., Romensky, E.: Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media. In: Computational Fluid Dynamics Review 1995, vol. 95, pp. 19–31. Wiley, New York (1995). https://doi.org/10.1142/7799
Godunov, S., Yu Mikhailova, T., Romenskii, E.: Systems of thermodynamically coordinated laws of conservation invariant under rotations. Sib. Math. J. 37(4), 790–806 (1996)
Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89(3), 271–306 (1959)
Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139(3), 521–523 (1961)
Godunov, S.K.: The problem of a generalized solution in the theory of quasilinear equations and in gas dynamics. Rus. Math. Surv. 17(3), 145–156 (1962)
Godunov, S.K.: Symmetric form of the magnetohydrodynamic equation. Numer. Methods Mech. Contin. Medium 3(1), 26–34 (1972). https://pdfs.semanticscholar.org/5066/233d430f114fdf1d4c9c1ef5a67b365ac19f.pdf
Godunov, S.K.: Elements of Mechanics of Continuous Media, 1st edn. Nauka, Moscow (1978)
Godunov, S.K., Romenskii, E.I.: Elements of Mechanics of Continuous Media and Conservation Laws. Nauchnaya kniga, Novosibirsk (1998)
Godunov, S.K., Romenskii, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum Publishers, New York (2003)
Godunov, S.K., Romensky, E.I.: Symmetric forms of thermodynamically compatible systems of conservation laws in continuum mechanics. In: ECCOMAS Conference on Numerical Methods in Engineering, pp. 54–57 (1996)
Grmela, M.: Particle and bracket formulations of kinetic equations. Contemp. Math. 28, 125–132 (1984)
Grmela, M.: Bracket formulation of diffusion–convection equations. Physica D 21, 179–212 (1986)
Grmela, M.: A framework for elasto-plastic hydrodynamics. Phys. Lett. A 312, 134–146 (2003)
Grmela, M.: Fluctuations in extended mass-action-law dynamics. Physica D 241(10), 976–986 (2012)
Grmela, M.: Contact geometry of mesoscopic thermodynamics and dynamics. Entropy 16(3), 1652–1686 (2014). https://doi.org/10.3390/e16031652
Grmela, M., Lebon, G., Dubois, C.: Multiscale thermodynamics and mechanics of heat. Phy. Rev. E 83(6), 1–15 (2011). https://doi.org/10.1103/PhysRevE.83.061134
Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620–6632 (1997). https://doi.org/10.1103/PhysRevE.56.6620
de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover Books on Physics. Dover Publications, New York (1984)
Holm, D.D.: Hamiltonian dynamics of a charged fluid, including electro-and magnetohydrodynamics. Phys. Lett. A 114(3), 137–141 (1986)
Hron, J., Miloš, V., Průša, V., Souček, O., Tůma, K.: On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients. Int. J. Non-Linear Mech. 95, 193–208 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.06.011
Hütter, M., Svendsen, B.: Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible-irreversible coupling. Contin. Mech. Thermodyn. 24(3), 211–227 (2012). https://doi.org/10.1007/s00161-011-0232-7
Hütter, M., Svendsen, B.: Quasi-linear versus potential-based formulations of force-flux relations and the GENERIC for irreversible processes: comparisons and examples. Contin. Mech. Thermodyn. 25(6), 803–816 (2013). https://doi.org/10.1007/s00161-012-0289-y
Janečka, A., Pavelka, M.: Gradient dynamics and entropy production maximization. J. Non-Equilib. Thermodyn. 43(1), 1–19 (2017)
Jou, D., Cimmelli, V.A.: Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: an overview. Commun. Appl. Ind. Math. 7(2), 196–222 (2016). https://doi.org/10.1515/caim-2016-0014. http://www.degruyter.com/view/j/caim.2015.7.issue-2/caim-2016-0014/caim-2016-0014.xml
Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205 (1975). https://doi.org/10.1007/BF00280740
Kaufman, A.N.: Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. A 100(8), 419–422 (1984)
Kraus, M., Kormann, K., Morrison, P.J., Sonnendrücker, E.: Gempic: geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 83(4), 1–51 (2017). https://doi.org/10.1017/S002237781700040X
Kroeger, M., Huetter, M.: Automated symbolic calculations in nonequilibrium thermodynamics. Comput. Phys. Commun. 181, 2149–2157 (2010)
Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Course of Theoretical Physics, vol. 6. Elsevier Butterworth-Heinemann, Oxford (2004)
Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media, vol. 8, 2nd edn. Elsevier, Amsterdam (1984)
Málek, J., Průša, V.: Derivation of equations for continuum mechanics and thermodynamics of fluids. In: Giga, Y., Novotný, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1–70. Springer, New York (2017). https://doi.org/10.1007/978-3-319-10151-4_1-1
Marsden, J.E., Weinstein, A.: Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica D 7, 305–323 (1983)
Mazaheri, A., Ricchiuto, M., Nishikawa, H.: A first-order hyperbolic system approach for dispersion. J. Comput. Phys. 321, 593–605 (2016). https://doi.org/10.1016/j.jcp.2016.06.001. http://www.sciencedirect.com/science/article/pii/S0021999116302261
Mielke, A., Peletier, M.A., Renger, D.R.M.: On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41(4), 1293–1327 (2014)
Morrison, P.J.: Bracket formulation for irreversible classical fields. Phys. Lett. A 100(8), 423–427 (1984)
Morrison, P.J.: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70(2), 467–521 (1998). https://doi.org/10.1103/RevModPhys.70.467
Muller, I., Ruggeri, T.: Rational Extended Thermodynamics, vol. 16. Springer, New York (1998)
Öttinger, H.C.: On the structural compatibility of a general formalism for nonequilibrium dynamics with special relativity. Physica A 259(1–2), 24–42 (1998). https://doi.org/10.1016/S0378-4371(98)00298-2. http://linkinghub.elsevier.com/retrieve/pii/S0378437198002982
Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)
Öttinger, H.C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56(6), 6633–6655 (1997). https://doi.org/10.1103/PhysRevE.56.6633
Pavelka, M., Klika, V., Esen, O., Grmela, M.: A hierarchy of Poisson brackets in non-equilibrium thermodynamics. Physica D 335, 54–69 (2016). https://doi.org/10.1016/j.physd.2016.06.011. http://linkinghub.elsevier.com/retrieve/pii/S0167278915301019
Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 90(6), 1–19 (2014). https://doi.org/10.1103/PhysRevE.90.062131
Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 90, 062131 (2014)
Pavelka, M., Klika, V., Vágner, P., Maršík, F.: Generalization of exergy analysis. Appl. Energy 137(Supplement C), 158–172 (2015)
Peshkov, I., Grmela, M., Romenski, E.: Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions. Contin. Mech. Thermodyn. 27(6), 905–940 (2015). https://doi.org/10.1007/s00161-014-0386-1
Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum Mechanics and Thermodynamics in the Hamilton and the Godunov-Type Formulations (2017). arXiv preprint http://arxiv.org/abs/1710.00058
Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28(1–2), 85–104 (2016). https://doi.org/10.1007/s00161-014-0401-6
Peshkov, I., Romenski, E., Dumbser, M.: A unified hyperbolic formulation for viscous fluids and elastoplastic solids. ArXiv e-prints (Accepted for Springer Proceedings in Mathematics and Statistics, XVI International Conference on Hyperbolic Problems) (2017). http://arxiv.org/abs/1705.02151
Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L., Keck, W.M.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999). http://www.idealibrary.com
Rajagopal, K.R., Srinivasa, A.R.: A thermodynamic frame work for rate type fluid models. J. Non-Newton. Fluid Mech. 88(3), 207–227 (2000). https://doi.org/10.1016/S0377-0257(99)00023-3
Romenski, E., Belozerov, A., Peshkov, I.: Conservative formulation for compressible multiphase flows. Q. Appl. Math. 74(1), 1–24 (2016). https://doi.org/10.1090/qam/1409
Romenski, E., Drikakis, D., Toro, E.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42(1), 68–95 (2010)
Romenski, E., Resnyansky, A.D., Toro, E.F.: Conservative hyperbolic model for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math. 65(2), 259–279 (2007)
Romenski, E.I., Sadykov, A.D.: On modeling the frequency transformation effect in elastic waves. Journal of Applied and Industrial Mathematics 5(2), 282–289 (2011). https://doi.org/10.1134/S1990478911020153
Romenskii, E.I.: Hyperbolic equations of Maxwell’s nonlinear model of elastoplastic heat-conducting media. Siberian Mathematical Journal 30(4), 606–625 (1989)
Romensky, E.I.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Modell. 28(10), 115–130 (1998)
Romensky, E.I.: Thermodynamics and hyperbolic systems of balance laws in continuum mechanics. In: Torro, E.F. (ed.) Godunov Methods: Theory and Applications, pp. 745–761. Springer, New York (2001)
Ruggeri, T.: Global existence of smooth solutions and stability of the constant state for dissipative hyperbolic systems with applications to extended thermodynamics. In: Rionero, S., Romano, G. (eds.) Trends and Applications of Mathematics to Mechanics, pp. 215–224. Springer, Milano (2005). https://doi.org/10.1007/88-470-0354-7_17
Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems: relativistic fluid dynamics. Ann. Inst. Henri Poincaré 34(1), 65–84 (1981)
Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-13341-6
Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003). https://doi.org/10.1063/1.1597472
Torrilhon, M.: Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech. 48(1), 429–458 (2016). https://doi.org/10.1146/annurev-fluid-122414-034259
Acknowledgements
I.P. acknowledges a financial support from ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02. M.P. and M.G. were supported by Czech Science Foundation, Project No. 17-15498Y, by Natural Sciences and Engineering Research Council of Canada (NSERC), grant numbers RGPIN-2014-06504-CRSNG and RGPAS462034-2014-CRSNG. This work has been supported by Charles University Research Program No. UNCE/SCI/023. E.R. acknowledges a partial support by the Program N15 of the Presidium of RAS (Project 121) and the Russian Foundation for Basic Research (Grant No. 16-29-15131).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Attila R. Imre.
Rights and permissions
About this article
Cite this article
Peshkov, I., Pavelka, M., Romenski, E. et al. Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30, 1343–1378 (2018). https://doi.org/10.1007/s00161-018-0621-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00161-018-0621-2