[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Continuum mechanics with dislocations, with the Cattaneo-type heat conduction, with mass transfer, and with electromagnetic fields is put into the Hamiltonian form and into the form of the Godunov-type system of the first-order, symmetric hyperbolic partial differential equations (SHTC equations). The compatibility with thermodynamics of the time reversible part of the governing equations is mathematically expressed in the former formulation as degeneracy of the Hamiltonian structure and in the latter formulation as the existence of a companion conservation law. In both formulations the time irreversible part represents gradient dynamics. The Godunov-type formulation brings the mathematical rigor (the local well posedness of the Cauchy initial value problem) and the possibility to discretize while keeping the physical content of the governing equations (the Godunov finite volume discretization).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Sur la géometrie différentielle des groupes de Lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 16, 319 (1966)

    Article  Google Scholar 

  2. Barton, P.T., Deiterding, R., Meiron, D., Pullin, D.: Eulerian adaptive finite-difference method for high-velocity impact and penetration problems. J. Comput. Phys. 240, 76–99 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barton, P.T., Drikakis, D., Romenski, E.I.: An Eulerian finite-volume scheme for large elastoplastic deformations in solids. Int. J. Numer. Methods Eng. 81(4), 453–484 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Benzoni-Gavage, S., Serre, D.: Multidimensional Hyperbolic Partial Differential Equations. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  5. Beris, A.N., Edwards, B.J.: Thermodynamics of Flowing Systems: With Internal Microstructure. Oxford University Press, Oxford (1994)

    Google Scholar 

  6. Bobylev, A.: The Chapman–Enskog and Grad methods for solving the Boltzmann equation. Akademiia Nauk SSSR Doklady 262, 71–75 (1982)

    ADS  MathSciNet  Google Scholar 

  7. Boillat, G.: Sur l’existence et la recherche d’équations de conservation supplément aires pour les systémes hyperboliques. C. R. Acad. Sci. Paris Sér A 278, 909–912 (1974)

    MathSciNet  MATH  Google Scholar 

  8. Boillat, G.: Involutions des systems conservatif. C. R. Acad. Sci. Paris 307, 891–894 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Bolmatov, D., Brazhkin, V.V., Trachenko, K.: Thermodynamic behaviour of supercritical matter. Nat. Commun. 4, 2331 (2013)

    Article  ADS  Google Scholar 

  10. Bolmatov, D., Zav’yalov, D., Zhernenkov, M., Musaev, E.T., Cai, Y.Q.: Unified phonon-based approach to the thermodynamics of solid, liquid and gas states. Ann. Phys. 363, 221–242 (2015). https://doi.org/10.1016/j.aop.2015.09.018

    Article  ADS  MathSciNet  Google Scholar 

  11. Bolmatov, D., Zhernenkov, M., Zav’yalov, D., Stoupin, S., Cai, Y.Q., Cunsolo, A.: Revealing the mechanism of the viscous-to-elastic crossover in liquids. J. Phys. Chem. Lett. 6(15), 3048–3053 (2015)

    Article  Google Scholar 

  12. Bolmatov, D., Zhernenkov, M., Zav’yalov, D., Stoupin, S., Cunsolo, A., Cai, Y.Q.: Thermally triggered phononic gaps in liquids at THz scale. Sci. Rep. 6(November 2015), 19469 (2016). https://doi.org/10.1038/srep19469. http://www.nature.com/articles/srep19469

  13. Boscheri, W., Dumbser, M., Loubère, R.: Cell centered direct Arbitrary–Lagrangian–Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity. Comput. Fluids 134–135, 111–129 (2016). https://doi.org/10.1016/j.compfluid.2016.05.004. http://linkinghub.elsevier.com/retrieve/pii/S004579301630144X

    Article  MathSciNet  Google Scholar 

  14. Brazhkin, V.V., Fomin, Y.D., Lyapin, A.G., Ryzhov, V.N., Trachenko, K.: Two liquid states of matter: a dynamic line on a phase diagram. Phys. Rev. E 85(3), 31,203 (2012)

    Article  Google Scholar 

  15. Clebsch, A.: Über die Integration der hydrodynamische Gleichungen. J. Reine Angew. Math. 56, 1–10 (1859). Please confirm the inserted page range for reference [15]

    Article  MathSciNet  Google Scholar 

  16. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: viscous heat-conducting fluids and elastic solids. J. Comput. Phys. 314, 824–862 (2016). https://doi.org/10.1016/j.jcp.2016.02.015. http://www.sciencedirect.com/science/article/pii/S0021999116000693

    Article  ADS  MathSciNet  Google Scholar 

  17. Dumbser, M., Peshkov, I., Romenski, E., Zanotti, O.: High order ADER schemes for a unified first order hyperbolic formulation of Newtonian continuum mechanics coupled with electro-dynamics. J. Computat. Phys. 348, 298–342 (2017). https://doi.org/10.1016/j.jcp.2017.07.020. http://www.sciencedirect.com/science/article/pii/S0021999117305284

    Article  ADS  MathSciNet  Google Scholar 

  18. Dupret, F., Marchal, J.: Loss of evolution in the flow of viscoelastic fluids. J. Nonnewton. Fluid Mech. 20, 143–171 (1986)

    Article  Google Scholar 

  19. Dzyaloshinskii, I.E., Volovick, G.E.: Poisson brackets in condensed matter physics. Ann. Phys. 125(1), 67–97 (1980). https://doi.org/10.1016/0003-4916(80)90119-0

    Article  ADS  MathSciNet  Google Scholar 

  20. Romenski, E.I.: Thermodynamics and balance laws for processes of inelastic deformations. In: Proceedings “WASCOM 2001” 11th Conference on Waves and Stability in Continuous Media, pp. 484–495. World Scientific, Singapore (2002)

  21. Esen, O., Pavelka, M., Grmela, M.: Hamiltonian coupling of electromagnetic field and matter. Int. J. Adv. Eng. Sci. Appl. Math. (2017). https://doi.org/10.1007/s12572-017-0179-4

    Article  MathSciNet  MATH  Google Scholar 

  22. Favrie, N., Gavrilyuk, S.: Dynamics of shock waves in elastic–plastic solids. ESAIM Proc. 30, 50–67 (2011). https://doi.org/10.1051/proc/201133005

    Article  MathSciNet  MATH  Google Scholar 

  23. Favrie, N., Gavrilyuk, S.: A rapid numerical method for solving Serre–Green–Naghdi equations describing long free surface gravity waves. Nonlinearity 30(7), 2718–2736 (2017). https://doi.org/10.1088/1361-6544/aa712d. http://stacks.iop.org/0951-7715/30/i=7/a=2718?key=crossref.139c98587b84970534e28823dcd579eb

    Article  ADS  MathSciNet  Google Scholar 

  24. Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge (2006). https://books.google.de/books?id=vQR0mN1dgUEC

  25. Frenkel, J.: Kinetic Theory of Liquids. Dover, New York (1955)

    MATH  Google Scholar 

  26. Friedrichs, K.O.: Symmetric positive linear differential equations. Commun. Pure Appl. Math. 11(3), 333–418 (1958)

    Article  MathSciNet  Google Scholar 

  27. Friedrichs, K.O., Lax, P.D.: Systems of conservation equations with a convex extension. Proc. Nat. Acad. Sci. 68(8), 1686–1688 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  28. Gavrilyuk, S.L., Makarenko, N.I., Sukhinin, S.V.: Waves in Continuous Media. Lecture Notes in Geosystems Mathematics and Computing. Springer, New York (2017)

    Book  Google Scholar 

  29. Godunov, S., Mikhailova, T., Romenskii, E.: Systems of thermodynamically coordinated laws of conservation invariant under rotations. Siberian Mathematical Journal 37(4), 690–705 (1996)

    Article  MathSciNet  Google Scholar 

  30. Godunov, S., Peshkov, I.: Thermodynamically consistent nonlinear model of elastoplastic Maxwell Medium. Computational Mathematics and Mathematical Physics 50(8), 1409–1426 (2010). https://doi.org/10.1134/S0965542510080117

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Godunov, S., Romensky, E.: Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media. In: Computational Fluid Dynamics Review 1995, vol. 95, pp. 19–31. Wiley, New York (1995). https://doi.org/10.1142/7799

    Book  Google Scholar 

  32. Godunov, S., Yu Mikhailova, T., Romenskii, E.: Systems of thermodynamically coordinated laws of conservation invariant under rotations. Sib. Math. J. 37(4), 790–806 (1996)

    Article  Google Scholar 

  33. Godunov, S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik 89(3), 271–306 (1959)

    MathSciNet  MATH  Google Scholar 

  34. Godunov, S.K.: An interesting class of quasilinear systems. Dokl. Akad. Nauk SSSR 139(3), 521–523 (1961)

    MathSciNet  MATH  Google Scholar 

  35. Godunov, S.K.: The problem of a generalized solution in the theory of quasilinear equations and in gas dynamics. Rus. Math. Surv. 17(3), 145–156 (1962)

    Article  Google Scholar 

  36. Godunov, S.K.: Symmetric form of the magnetohydrodynamic equation. Numer. Methods Mech. Contin. Medium 3(1), 26–34 (1972). https://pdfs.semanticscholar.org/5066/233d430f114fdf1d4c9c1ef5a67b365ac19f.pdf

  37. Godunov, S.K.: Elements of Mechanics of Continuous Media, 1st edn. Nauka, Moscow (1978)

    Google Scholar 

  38. Godunov, S.K., Romenskii, E.I.: Elements of Mechanics of Continuous Media and Conservation Laws. Nauchnaya kniga, Novosibirsk (1998)

    Google Scholar 

  39. Godunov, S.K., Romenskii, E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer Academic/Plenum Publishers, New York (2003)

    Book  Google Scholar 

  40. Godunov, S.K., Romensky, E.I.: Symmetric forms of thermodynamically compatible systems of conservation laws in continuum mechanics. In: ECCOMAS Conference on Numerical Methods in Engineering, pp. 54–57 (1996)

  41. Grmela, M.: Particle and bracket formulations of kinetic equations. Contemp. Math. 28, 125–132 (1984)

    Article  MathSciNet  Google Scholar 

  42. Grmela, M.: Bracket formulation of diffusion–convection equations. Physica D 21, 179–212 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  43. Grmela, M.: A framework for elasto-plastic hydrodynamics. Phys. Lett. A 312, 134–146 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  44. Grmela, M.: Fluctuations in extended mass-action-law dynamics. Physica D 241(10), 976–986 (2012)

    Article  ADS  Google Scholar 

  45. Grmela, M.: Contact geometry of mesoscopic thermodynamics and dynamics. Entropy 16(3), 1652–1686 (2014). https://doi.org/10.3390/e16031652

    Article  ADS  MathSciNet  Google Scholar 

  46. Grmela, M., Lebon, G., Dubois, C.: Multiscale thermodynamics and mechanics of heat. Phy. Rev. E 83(6), 1–15 (2011). https://doi.org/10.1103/PhysRevE.83.061134

    Article  Google Scholar 

  47. Grmela, M., Öttinger, H.C.: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56(6), 6620–6632 (1997). https://doi.org/10.1103/PhysRevE.56.6620

    Article  ADS  MathSciNet  Google Scholar 

  48. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover Books on Physics. Dover Publications, New York (1984)

    Google Scholar 

  49. Holm, D.D.: Hamiltonian dynamics of a charged fluid, including electro-and magnetohydrodynamics. Phys. Lett. A 114(3), 137–141 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  50. Hron, J., Miloš, V., Průša, V., Souček, O., Tůma, K.: On thermodynamics of viscoelastic rate type fluids with temperature dependent material coefficients. Int. J. Non-Linear Mech. 95, 193–208 (2017). https://doi.org/10.1016/j.ijnonlinmec.2017.06.011

    Article  ADS  Google Scholar 

  51. Hütter, M., Svendsen, B.: Thermodynamic model formulation for viscoplastic solids as general equations for non-equilibrium reversible-irreversible coupling. Contin. Mech. Thermodyn. 24(3), 211–227 (2012). https://doi.org/10.1007/s00161-011-0232-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Hütter, M., Svendsen, B.: Quasi-linear versus potential-based formulations of force-flux relations and the GENERIC for irreversible processes: comparisons and examples. Contin. Mech. Thermodyn. 25(6), 803–816 (2013). https://doi.org/10.1007/s00161-012-0289-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Janečka, A., Pavelka, M.: Gradient dynamics and entropy production maximization. J. Non-Equilib. Thermodyn. 43(1), 1–19 (2017)

    Article  ADS  Google Scholar 

  54. Jou, D., Cimmelli, V.A.: Constitutive equations for heat conduction in nanosystems and nonequilibrium processes: an overview. Commun. Appl. Ind. Math. 7(2), 196–222 (2016). https://doi.org/10.1515/caim-2016-0014. http://www.degruyter.com/view/j/caim.2015.7.issue-2/caim-2016-0014/caim-2016-0014.xml

    Article  MathSciNet  Google Scholar 

  55. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 58(3), 181–205 (1975). https://doi.org/10.1007/BF00280740

    Article  MathSciNet  MATH  Google Scholar 

  56. Kaufman, A.N.: Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. A 100(8), 419–422 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  57. Kraus, M., Kormann, K., Morrison, P.J., Sonnendrücker, E.: Gempic: geometric electromagnetic particle-in-cell methods. J. Plasma Phys. 83(4), 1–51 (2017). https://doi.org/10.1017/S002237781700040X

  58. Kroeger, M., Huetter, M.: Automated symbolic calculations in nonequilibrium thermodynamics. Comput. Phys. Commun. 181, 2149–2157 (2010)

    Article  ADS  Google Scholar 

  59. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Course of Theoretical Physics, vol. 6. Elsevier Butterworth-Heinemann, Oxford (2004)

    Google Scholar 

  60. Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media, vol. 8, 2nd edn. Elsevier, Amsterdam (1984)

    Google Scholar 

  61. Málek, J., Průša, V.: Derivation of equations for continuum mechanics and thermodynamics of fluids. In: Giga, Y., Novotný, A. (eds.) Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, pp. 1–70. Springer, New York (2017). https://doi.org/10.1007/978-3-319-10151-4_1-1

    Chapter  Google Scholar 

  62. Marsden, J.E., Weinstein, A.: Coadjoint orbits, vortices and Clebsch variables for incompressible fluids. Physica D 7, 305–323 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  63. Mazaheri, A., Ricchiuto, M., Nishikawa, H.: A first-order hyperbolic system approach for dispersion. J. Comput. Phys. 321, 593–605 (2016). https://doi.org/10.1016/j.jcp.2016.06.001. http://www.sciencedirect.com/science/article/pii/S0021999116302261

    Article  ADS  MathSciNet  Google Scholar 

  64. Mielke, A., Peletier, M.A., Renger, D.R.M.: On the relation between gradient flows and the large-deviation principle, with applications to Markov chains and diffusion. Potential Anal. 41(4), 1293–1327 (2014)

    Article  MathSciNet  Google Scholar 

  65. Morrison, P.J.: Bracket formulation for irreversible classical fields. Phys. Lett. A 100(8), 423–427 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  66. Morrison, P.J.: Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70(2), 467–521 (1998). https://doi.org/10.1103/RevModPhys.70.467

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Muller, I., Ruggeri, T.: Rational Extended Thermodynamics, vol. 16. Springer, New York (1998)

    Book  Google Scholar 

  68. Öttinger, H.C.: On the structural compatibility of a general formalism for nonequilibrium dynamics with special relativity. Physica A 259(1–2), 24–42 (1998). https://doi.org/10.1016/S0378-4371(98)00298-2. http://linkinghub.elsevier.com/retrieve/pii/S0378437198002982

    Article  ADS  Google Scholar 

  69. Öttinger, H.C.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)

    Book  Google Scholar 

  70. Öttinger, H.C., Grmela, M.: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56(6), 6633–6655 (1997). https://doi.org/10.1103/PhysRevE.56.6633

    Article  ADS  MathSciNet  Google Scholar 

  71. Pavelka, M., Klika, V., Esen, O., Grmela, M.: A hierarchy of Poisson brackets in non-equilibrium thermodynamics. Physica D 335, 54–69 (2016). https://doi.org/10.1016/j.physd.2016.06.011. http://linkinghub.elsevier.com/retrieve/pii/S0167278915301019

    Article  ADS  MathSciNet  Google Scholar 

  72. Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 90(6), 1–19 (2014). https://doi.org/10.1103/PhysRevE.90.062131

    Article  Google Scholar 

  73. Pavelka, M., Klika, V., Grmela, M.: Time reversal in nonequilibrium thermodynamics. Phys. Rev. E 90, 062131 (2014)

    Article  ADS  Google Scholar 

  74. Pavelka, M., Klika, V., Vágner, P., Maršík, F.: Generalization of exergy analysis. Appl. Energy 137(Supplement C), 158–172 (2015)

    Article  Google Scholar 

  75. Peshkov, I., Grmela, M., Romenski, E.: Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions. Contin. Mech. Thermodyn. 27(6), 905–940 (2015). https://doi.org/10.1007/s00161-014-0386-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Peshkov, I., Pavelka, M., Romenski, E., Grmela, M.: Continuum Mechanics and Thermodynamics in the Hamilton and the Godunov-Type Formulations (2017). arXiv preprint http://arxiv.org/abs/1710.00058

  77. Peshkov, I., Romenski, E.: A hyperbolic model for viscous Newtonian flows. Contin. Mech. Thermodyn. 28(1–2), 85–104 (2016). https://doi.org/10.1007/s00161-014-0401-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. Peshkov, I., Romenski, E., Dumbser, M.: A unified hyperbolic formulation for viscous fluids and elastoplastic solids. ArXiv e-prints (Accepted for Springer Proceedings in Mathematics and Statistics, XVI International Conference on Hyperbolic Problems) (2017). http://arxiv.org/abs/1705.02151

  79. Powell, K.G., Roe, P.L., Linde, T.J., Gombosi, T.I., De Zeeuw, D.L., Keck, W.M.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999). http://www.idealibrary.com

    Article  ADS  MathSciNet  Google Scholar 

  80. Rajagopal, K.R., Srinivasa, A.R.: A thermodynamic frame work for rate type fluid models. J. Non-Newton. Fluid Mech. 88(3), 207–227 (2000). https://doi.org/10.1016/S0377-0257(99)00023-3

    Article  MATH  Google Scholar 

  81. Romenski, E., Belozerov, A., Peshkov, I.: Conservative formulation for compressible multiphase flows. Q. Appl. Math. 74(1), 1–24 (2016). https://doi.org/10.1090/qam/1409

    Article  MathSciNet  MATH  Google Scholar 

  82. Romenski, E., Drikakis, D., Toro, E.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42(1), 68–95 (2010)

    Article  MathSciNet  Google Scholar 

  83. Romenski, E., Resnyansky, A.D., Toro, E.F.: Conservative hyperbolic model for compressible two-phase flow with different phase pressures and temperatures. Q. Appl. Math. 65(2), 259–279 (2007)

    Article  Google Scholar 

  84. Romenski, E.I., Sadykov, A.D.: On modeling the frequency transformation effect in elastic waves. Journal of Applied and Industrial Mathematics 5(2), 282–289 (2011). https://doi.org/10.1134/S1990478911020153

    Article  Google Scholar 

  85. Romenskii, E.I.: Hyperbolic equations of Maxwell’s nonlinear model of elastoplastic heat-conducting media. Siberian Mathematical Journal 30(4), 606–625 (1989)

    Article  MathSciNet  Google Scholar 

  86. Romensky, E.I.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Modell. 28(10), 115–130 (1998)

    Article  MathSciNet  Google Scholar 

  87. Romensky, E.I.: Thermodynamics and hyperbolic systems of balance laws in continuum mechanics. In: Torro, E.F. (ed.) Godunov Methods: Theory and Applications, pp. 745–761. Springer, New York (2001)

    Chapter  Google Scholar 

  88. Ruggeri, T.: Global existence of smooth solutions and stability of the constant state for dissipative hyperbolic systems with applications to extended thermodynamics. In: Rionero, S., Romano, G. (eds.) Trends and Applications of Mathematics to Mechanics, pp. 215–224. Springer, Milano (2005). https://doi.org/10.1007/88-470-0354-7_17

    Chapter  Google Scholar 

  89. Ruggeri, T., Strumia, A.: Main field and convex covariant density for quasi-linear hyperbolic systems: relativistic fluid dynamics. Ann. Inst. Henri Poincaré 34(1), 65–84 (1981)

    MathSciNet  MATH  Google Scholar 

  90. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-13341-6

    Book  MATH  Google Scholar 

  91. Struchtrup, H., Torrilhon, M.: Regularization of Grad’s 13 moment equations: derivation and linear analysis. Phys. Fluids 15(9), 2668–2680 (2003). https://doi.org/10.1063/1.1597472

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Torrilhon, M.: Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech. 48(1), 429–458 (2016). https://doi.org/10.1146/annurev-fluid-122414-034259

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I.P. acknowledges a financial support from ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02. M.P. and M.G. were supported by Czech Science Foundation, Project No. 17-15498Y, by Natural Sciences and Engineering Research Council of Canada (NSERC), grant numbers RGPIN-2014-06504-CRSNG and RGPAS462034-2014-CRSNG. This work has been supported by Charles University Research Program No. UNCE/SCI/023. E.R. acknowledges a partial support by the Program N15 of the Presidium of RAS (Project 121) and the Russian Foundation for Basic Research (Grant No. 16-29-15131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Pavelka.

Additional information

Communicated by Attila R. Imre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peshkov, I., Pavelka, M., Romenski, E. et al. Continuum mechanics and thermodynamics in the Hamilton and the Godunov-type formulations. Continuum Mech. Thermodyn. 30, 1343–1378 (2018). https://doi.org/10.1007/s00161-018-0621-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-018-0621-2

Keywords

Navigation