Abstract
On the example of two-phase continua experiencing stress-induced solid–fluid phase transitions, we explore the use of the Euler structure in the formulation of the governing equations. The Euler structure guarantees that solutions of the time evolution equations possessing it are compatible with mechanics and with thermodynamics. The former compatibility means that the equations are local conservation laws of the Godunov type, and the latter compatibility means that the entropy does not decrease during the time evolution. In numerical illustrations, in which the one-dimensional Riemann problem is explored, we require that the Euler structure is also preserved in the discretization.
Similar content being viewed by others
References
Euler L.: Principes généraux du mouvement des fluides. Académie Royale des Sciences et des Belles-Lettres de Berlin, Mémories. 11 (1755)
de Groot S.R., Mazur P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)
Godunov S.K.: An interesting class of quasilinear systems. Sov. Math. Dokl. 2, 947–949 (1961)
Friedrichs K.O., Lax P.D.: Systems of conservation laws with a convex extension. Proc. Nat. Acad. Sci. U.S.A. 68, 1686–1688 (1971)
Godunov S.K.: Symmetric form of the magnetohydrodynamic equation. Chislennye Metody Mekhaniki Sploshnoi Sredy 3(1), 26–34 (1972)
Friedrichs K.O.: Conservation equations and the laws of motion in classical physics. Commun. Pure Appl. Math. 31, 123–131 (1978)
Godunov S.K., Romenski E.I.: Elements of Continuum Mechanics and Conservation Laws. Kluwer/Plenum Publishers, New York (2003)
Ruggeri T.: The entropy principle: from continuum mechanics to hyperbolic systems of balance laws. Bollettino dell’Unione Matematica Italiana 8(B(1)), 1–20 (2005)
Clebsch, A.: Über die Integration der hydrodynamische Gleichungen. J. Reine Angew. Math. 56, 1–10 (1895)
Dzyaloshinski I.E., Volovick G.E.: Poisson brackets in condense matter physics. Ann. Phys. 125, 67–97 (1980)
Grmela M.: Particle and bracket formulations of kinetic equations. Contemp. Math. 28, 125–132 (1984)
Grmela M.: Bracket formulation of dissipative fluid mechanics equations. Phys. Lett. A. 102, 355 (1984)
Kaufman A.N.: Dissipative Hamiltonian systems: a unifying principle. Phys. Lett. A. 100, 419–422 (1984)
Morrison P.J.: Bracket formulation for irreversible classical fields. Phys. Lett. A. 100, 423–427 (1984)
Beris A.N., Edwards B.J.: Thermodynamics of Flowing Systems. Oxford University Press, Oxford (1994)
Grmela M., Oettinger H.C.: Dynamics and thermodynamics of complex fluids I: general formulation. Phys. Rev. E 56, 6620–6633 (1997)
Oettinger H.C., Grmela M.: Dynamics and thermodynamics of complex fluids II: illustration of the general folmalism. Phys. Rev. E. 56, 6633–6650 (1997)
Grmela M.: Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering. Adv. Chem. Eng. 39, 75–128 (2010)
Grmela M.: Role of thermodynamics in multiscale physics. Comput. Math. Appl. 65(10), 1457–1470 (2013)
Oettinger H.C.: Beyond Equilibrium Thermodynamics. Wiley, New York (2005)
Putz A.M.V., Burghelea T.I.: The solid–fluid transition in a yield stress shear thinning physical gel. Rheol. Acta 48, 673–689 (2009)
Balmforth N.J., Frigaard I.A., Ovarlez G.: Yielding to stress: recent developments in viscoplastic fluid mechanics. Annu. Rev. Fluid Mech. 46, 121–146 (2014)
Friedrichs K.O.: Symmetric positive linear differential equations. Pure Appl. Math. 11, 333–418 (1958)
Godunov, S.K., Romensky, E.: Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media. In: Hafez, M., Oshima, K. (eds.) Computational Fluid Dynamics Review, pp. 19–31. Wiley, New York (1995)
Godunov S.K., Mikhailova T.Y., Romenski E.I.: Systems of thermodynamically coordinated laws of conservation invariant under rotations. Sib. Math. J. 37, 690–705 (1996)
Romensky E.: Hyperbolic systems of thermodynamically compatible conservation laws in continuum mechanics. Math. Comput. Model. 28, 115–130 (1998)
Romensky E.I.: Thermodynamics and hyperbolic systems of balance laws in continuum mechanics. In: Toro, E.F. (ed.) Godunov Methods: Theory and Applications, pp. 745–761. Kluwer/Plenum, New York (2001)
Callen H.B.: Thermodynamics. Wiley, New York (1960)
Cattaneo C.: Sulla conduzione del calore. Atti del Seminario Matematico e Fisico della Universita di Modena 3, 83–101 (1948)
Jou D., Casas-Vàzquez J., Lebon G.: Extended Irreversible Thermodynamics. Springer, Berlin (2010)
Gouin H., Gavrilyuk S.: Hamilton’s principle and Rankine–Hugoniot conditions for general motions of mixtures. Meccanica 34, 39–47 (1999)
Zhang H., Calderer M.C.: Incipient dynamics of swelling of gels. SIAM J. Appl. Math. 68(6), 1641–1664 (2008)
Trusdell C.: Rational Thermodynamics. Springer, New York (1984)
Romenski, E.: Conservative formulation for compressible fluid flow through elastic porous media. In: Vazquez-Cendon, E., Hidalgo, A., Garcia-Navarro, P., Cea, L. (eds.) Numerical Methods for Hyperbolic Equations, pp. 193–199. Taylor & Francis Group, London (2013)
Gavrilyuk S.: Multiphase flow modeling via Hamilton’s principle. CISM Courses Lect. 535, 163–210 (2011)
Favrie N., Gavrilyuk S.L., Saurel R.: Solid–fluid diffuse interface model in cases of extreme deformations. J. Comput. Phys. 228(16), 6037–6077 (2009)
Marsden J. E., Ratiu T., Weinstein A.: Semidirect products and reduction in mechanics. Trans. Am. Math. Soc. 281, 147–177 (1984)
Hamiltonian R.S.: Fluid mechanics. Annu. Rev. Fluid Mech. 20, 225–256 (1988)
Miller G.H., Colella P.: A high-order Eulerian Godunov method for elastic-plastic flow in solids. J. Comput. Phys. 167, 137–176 (2001)
Romenski E., Drikakis D., Toro E.: Conservative models and numerical methods for compressible two-phase flow. J. Sci. Comput. 42, 68–95 (2010)
Godunov S.K., Romenskii E.I.: Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates. J. Appl. Mech. Tech. Phys. 13, 868–884 (1972)
Godunov S.K.: Elements of Continuum Mechanics. Nauka, Moscow (1978)
Grmela M.: Fluctuation in extended mass-action-law dynamics. Phys. D 24, 976–986 (2012)
Romenski E., Toro E.F.: Compressible two-phase flows: two-pressure models and numerical methods. Comput. Fluid Dyn. 13, 403–416 (2004)
Steinmann P.: Views on multiplicative elastoplasticity and the continuum theory of dislocations. Int. J. Eng. Sci. 34(15), 1717–1735 (1996)
Powell K.G., Roe P.L., Linde T.J., Gombosi T.I., DeZeeuw D.L.: A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999)
Munz C.D., Omnes P., Schnaider R., Sonnendrücker E., Voss U.: Divergence correction techniques for Maxwell solvers based on a hyperbolic model. J. Comput. Phys. 161, 484–511 (2000)
Babii D.P., Godunov S.K., Zhukov V.T., Feodoritova O.B.: On the difference approximations of overdetermined hyperbolic equations of classical mathematical physics. Comput. Math. Math. Phys. 47(3), 427–441 (2007)
Bouchbinder E., Langer J.S., Procaccia I.: Athermal shear-transformation-zone theory of amorphous plastic deformation. I. Basic principles. Phys. Rev. E. 75, 036107 (2007)
Kosevich A.M.: Dynamical theory of dislocations. Physics-Uspekhi. 7(6), 837–854 (1965)
Kosevich, A.M.: Crystal dislocations and the theory of elasticity. In: Nabarro, F.R.N. Dislocations in Solids, pp. 33–141. North-Holland, Amsterdam (1979)
Malygin G.A.: Dislocation self-organization processes and crystal plasticity. Physics-Uspekhi. 42(9), 887 (1999)
Toro E.F.: Riemann Solvers and Numerical Methods in Fluid Dynamics. Springer, Berlin (1999)
Godunov S.K.: A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat. Sb. 47, 271–306 (1959)
LeVeque R.J.: Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2002)
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (1999)
Moyers-Gonzales M., Burghelea T.I., Mak J.: Linear stability analysis for plane-Poiseuille flow of an elastoviscoplastic fluid with internal microstructure for large Reynolds numbers. J. Non-Newton. Fluid Mech. 166, 515–531 (2011)
El Afif A., Grmela M.: Non-Fickian mass transport in polymers. J. Rheol. 46(3), 591–628 (2002)
Godunov S.K., Peshkov I.M.: Thermodynamically consistent nonlinear model of an elastoplastic Maxwell medium. Comput. Math. Math. Phys. 50, 1409–1426 (2010)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Andreas Öchsner.
Ilya Peshkov is on leave from Sobolev Institute of Mathematics, Novosibirsk, Russia.
Rights and permissions
About this article
Cite this article
Peshkov, I., Grmela, M. & Romenski, E. Irreversible mechanics and thermodynamics of two-phase continua experiencing stress-induced solid–fluid transitions. Continuum Mech. Thermodyn. 27, 905–940 (2015). https://doi.org/10.1007/s00161-014-0386-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00161-014-0386-1