[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

On the Generalized Heat Conduction Laws in the Reversible Thermodynamics of a Continuous Medium

  • PHYSICS
  • Published:
Doklady Physics Aims and scope Submit manuscript

Abstract

A general covariance variational model of reversible thermodynamics is developed in which the kinematic and force variables are the components of unified tensor objects in the space−time continuum, and the resolving equations of the dynamic thermoelasticity and heat-conduction of an ideal (defect-free) media are described by the 4D-vector equation. It is shown that the formulations of relations of the generalized Duhamel−Neumann representation and the Maxwell−Cattaneo law follow directly from the constitutive relations of the space−time-continuum model without additional hypotheses and assumptions. It is proved that the Maxwell−Cattaneo and Fourier generalized heat-conduction laws are unambiguously characterized by well-known thermomechanical parameters determined under isothermal and adiabatic conditions for reversible coupled deformation processes and heat-conduction despite the fact that one usually relates both the Fourier law and the relaxation time in the Maxwell−Cattaneo law with the dissipative processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. A. Lurie and P. A. Belov, Mekh. Komp. Mater. 7 (2), 266 (2001).

    Google Scholar 

  2. P. A. Belov, A. G. Gorshkov, and S. A. Lurie, Mekh. Tverd. Tela, No. 6, 41 (2006).

    Google Scholar 

  3. S. A. Lurie and P. A. Belov, Mathematical Models of Continuum Mechanics and Physical Fields, Ed. by S. N. Borisov (VTs RAN, Moscow, 2000) [in Russian].

  4. P. A. Belov and S. A. Lurie, Mekh. Tverd. Tela, No. 5, 108 (2012).

    Google Scholar 

  5. Moran Wang, Din-Yang Cao, and Zeng-Yuan Guo, Frontiers in Heat and Mass Transfer (FHMT) 1, 013004 (2010).

    Article  Google Scholar 

  6. S. E. Alexandrov, E. V. Lomakin, and Y. R. Jeng, Dokl. Phys. 57 (3), 136 (2012).

    Article  ADS  Google Scholar 

  7. A. Dhar, Adv. Phys. 57 (5), 457 (2008).

    Article  ADS  Google Scholar 

  8. A. A. Le-Zakharov and A. M. Krivtsov, Dokl. Phys. 53 (5), 45 (2008).

    Google Scholar 

  9. A. M. Krivtsov, Dokl. Phys. 60 (9), 407 (2015).

    Article  ADS  Google Scholar 

  10. S. A. Lurie, P. A. Belov, L. N. Rabinskii, and S. I. Zhavoronok, Scale Effects in Continuum Mechanics. Materials with Micro- and Nanostructure (Izdatel’stvo MAI, Moscow, 2011) [in Russian].

  11. J. C. Maxwell, Phil. Trans. Roy. Soc. London 157, 49 (1866).

    Google Scholar 

  12. M. C. Cattaneo, C. R. Hebd. Seances Acad. 247 (4), 431 (1958).

    Google Scholar 

  13. S. L. Sobolev, Usp. Phys. Nauk 161 (3), 5 (1991).

    Article  Google Scholar 

  14. S. A. Lurie and P. A. Belov, Nanoscale Systems: Math. Modeling, Theory and Appl. 2, 166 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Lurie.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lomakin, E.V., Lurie, S.A., Belov, P.A. et al. On the Generalized Heat Conduction Laws in the Reversible Thermodynamics of a Continuous Medium. Dokl. Phys. 63, 503–507 (2018). https://doi.org/10.1134/S102833581812011X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102833581812011X