[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Plant biotechnology: A case study ofBacillus thuringiensis (Bt) and its application to the future of genetic engineered trees

  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Agricultural productivity may be raised in a sustainable way by many different technologies such as biological fertilizers, soil and water conservation, biodiversity conservation, improved pest control, and changes in land ownership and distribution. Of these measures, biotechnology applications probably hold the most promise in augmenting conventional agricultural productivity, because biotechnology applications give not only the need to increase production, but also protect the environment and conserving natural resources for future generations. Biotechnology applications will have the possibilities to increase productivity and food availability through better agronomic performance of new varieties, including resistance to pests; rapid multiplication of disease-free plants; ability to obtain natural plant products using tissue culture; diagnosis of diseases of plants and livestock; manipulation of reproduction methods increasing the efficiency of breeding; and the provision of incentives for greater participation by the private sector through investments. Insect resistance through the transfer of a gene for resistance fromBacillus thuringiensis (Bt) is one of the most advanced biotechnology applications already being commercialized in many parts of the world. This paper reviews the development and the status ofBt technology and application ofBt transgenic plants in current agriculture, and discusses specific issues related to the transfer of the technology to the future of genetic engineered trees with emphasis on conifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbas, H.K., Tanaka, T., and Shier, W.T. 1995. Biological activities of synthetic analogues of Alternaria alternata toxin (AALtoxin) and fumonisin in plant and mammalian cell cultures [J]. Phytochemistry,40: 1681–1689.

    Article  PubMed  CAS  Google Scholar 

  • Alsta, D.N., Andow, D.A. 1995. Managing the evolution of insect resistance to transgenic plants [J]. Science,268: 1894–1896.

    Article  Google Scholar 

  • Andow, D.A., Hutchison, W.D. 1998. Bt-corn resistance management [C]. In Mellon M, Rissler J. (eds) Now or Never: Serious New Plans to Save Natural Pest Control. Cambridge MA): Union of Concerned Scientists.

    Google Scholar 

  • Archer, T.L., Schuster, G., Patrick, C., Cronholm, G., Bynum, E.D. Jr, Morrison, W.P. 2000. Whorl and stalk damage by European and Southwestern corn borers to four events ofBacillus thuringiensis transgenic malze [J]. Crop Protection,19: 181–190.

    Article  Google Scholar 

  • Armstrong, C.L., Parker, G.B., Pershing, J.C., Brown, S.M., Sanders, P.R., Duncan, D.R., Stone, T., Dean, D.A., DeBoer, D.L., Hart, J., Howe, A.R., Morrish, F.M., Pajeau, M.E., Petersen, W.L., Reich, B.J., Rodriguez, R., Santino, C.G., Sato, S.J., Schuler, W., Sims, S.R., Stehling, S., Tarochione, LJ, and Fromm, M.E., 1995. Field evaluation of European corn borer control in progeny of 173 transgenic corn events expressing an insecticidal protein fromBacillus thuringiensis [J]. Crop Sci.,35: 550–557.

    Article  Google Scholar 

  • Asano, S. and Hori, H. 1995. Appl. Entomo. Zool.30 (2): 369–374, zitiert nach Kumar PA, Sharma RP.

    Google Scholar 

  • Balter, M. 1997. Transgenic corn ban sparks a furor [J]. Science,275: 1063.

    Article  CAS  Google Scholar 

  • Barry D., Darrah L.L. 1991. Effect of research on commercial hybrid maize re-sistance to European corn borer (Lepidoptera: Pyralidae) [J]. Journal of Economic Entomology,84: 1053–1059.

    Google Scholar 

  • Bergelson J, Purrington CB, Wichmann G. 1998. Promiscuity in transgenic plants [J]. Nature,395: 25.

    Article  PubMed  CAS  Google Scholar 

  • Bernhard, K and Utz, R. 1993. Production ofBacillus thuringiensis Insecticides for Experimental and Commercial Uses [C]. In: Entwistle PF, Cory JS, Bailey, MJ, Higgs S (Eds.) (1993)Bacillus thuringiensis, An Environmental Biopesticide: Theory and Practice. Chichester UK: John Wiley & Sons.

    Google Scholar 

  • Bhowmik, P.C. 1994. Biology and control of common milkweed (Asclepias syr-iaca) [J]. Review of Weed Science,6: 227–250.

    Google Scholar 

  • Boudet, A.M. 1998. A new view of lignification [J]. Trends in Plant Sciences,3: 67–71.

    Article  Google Scholar 

  • Brower, L.P. 1996. Monarch butterfly orientation: Missing pieces of a magnificent puzzle [J]. Journal of Experimental Biology,199: 93–103.

    PubMed  Google Scholar 

  • Butler, D., Reichhardt, T. 1999. Long-term effect of GM crops serves up food for thought [J]. Nature,398: 651–656.

    Article  PubMed  CAS  Google Scholar 

  • Cotty, P.J., Howell, D.R., Bock, C., and Tellez, A. 1997. Aflatoxin contamination of commercially grown transgenic Bt cottonseed [C]. In: Proc. Beitwide Cotton Prod. Res, p108–110. Conf. National Cotton Council of America, Memphis, TN.

  • Crickmore, N., Zeigler, D.R., Feitelson, J., Schnepf, E., Lambert, B., Lereclus, D., Baum, J., Dean, D.H. 1997. The Insecticidal Proteins ofBacillus thuringiensis [J]. Advances in Applied Microbiology,42: 1–43.

    Google Scholar 

  • Croft, B.A. 1990. Arthropod Biological Control Agents and Pesticides [M]. New York: John Wiley & Sons.

    Google Scholar 

  • Davis, P.M., and Coleman, S.B. 1997. European corn borer (Lepidoptera: Pyralidae) feeding behavior and survival on transgenic corn containingCrylA(b) protein fromBacillus thuringiensis [J]. J. Kans. Entomol. Soc.,70: 31–38.

    Google Scholar 

  • Edwards, D.L., Payne, J., Soares, G.G. 1988. Novel isolates ofBacillus thuringiensis having activity against nematodes [R]. European Patent Application, EP 0 303 426 A2.

  • Fearing, P.L., Brown, D., Vlachos, D., Meghji, M., Privalle, L. 1997. Quantitative analysis ofCrylA(b) expression in Bt maize plants, tissues, and silage and stability of expression over successive generation [J]. Molecular Breeding,3: 169–176.

    Article  CAS  Google Scholar 

  • Federici, B.A. 1998. Broadscale use of pest-killing plants to be true test [J]. California Agriculture,52: 14–20.

    Google Scholar 

  • Fladung, M. 1999. Gene stability in transgenic aspen-Populus. I. Flanking DNA sequences and TDNA structure [J]. Mol. Gen. Genet.,260: 574–581.

    Article  PubMed  CAS  Google Scholar 

  • Fladung, M., Muhs, H-J, Ahuja, M.R. 1996. Morphological changes observed in transgenicPopulus carrying therolC gene fromAgrobacterium rhizogenes [J]. Silvae Genetica,45: 349–354.

    Google Scholar 

  • Fladung, M., Kumar, S., Ahuja, M.R. 1997. Genetic transformation ofPopulus genotypes with different chimeric gene constructs: Transformation efficiency and molecular analysis [J]. Transgenic Research,6: 111–121.

    Article  CAS  Google Scholar 

  • Giles, K.L., Hellmich, R.L., Iverson, C.T., Lewis, L.C. 2000. Effects of transgenicBacillus thuringiensis maize grain onB. thuringiensis: Susceptible Plodia in-terpunctella (Lepidoptera: Pyralidae) [J]. Journal of Economic Entomology,93: 1011–1016.

    PubMed  CAS  Google Scholar 

  • Glare, T.R., O'Callaghan, M. 2000.Bacillus thuringiensis Biology, Ecology and Safety [M]. New York: John Wiley & Sons.

    Google Scholar 

  • Gould, F. 1991. The evolutionary potential of crop pests [J]. American Scientist,79: 496–507.

    Google Scholar 

  • Gould, F., Anderson, A., Jones, A., Sumerford, D., Heckel, D.G., Lopez, J., Micinski, S., Leonard, R., Laster, M. 1997. Initial frequency of alleles for resistance toBacillus thuringiensis toxins in field populations of Heliothis virescens [J]. Proceedings of the National Academy of Sciences of the United States of America,94: 3519–3523.

    Article  PubMed  CAS  Google Scholar 

  • Gould, F. & Tabashnik, B. 1998.Bt-cotton resistance management. In: Mellon, M. & Rissler, J. (eds) Now or never: serious new plans to save a natural pest control p67–105 (Union of Concerned Scientists, Cambridge, MA.

    Google Scholar 

  • Griffin, A.R. 1996. Genetically modified trees—the plantations of the future or an expensive distraction? [J]. Commonwealth Forestry Review,75: 169–175.

    Google Scholar 

  • Hargrove, T.R. 1999. Wrangling over refuge [J]. Am. Sci.,87: 24–25.

    Google Scholar 

  • Hofte, H., Whiteley, H.R. 1989. Insecticidal Crystal Proteins ofBacillus thuringiensis [J]. Microbiological Reviews,53: 242–255.

    PubMed  CAS  Google Scholar 

  • Hu, W.J., Harding, S.A., Lung, J., Popko, J.L., Ralph, J., Stokke, D.D., Tsai, C.J., Chiang, V.L. 1999. Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees [J]. Nature Biotechnology,17: 808–812.

    Article  PubMed  CAS  Google Scholar 

  • Huang, Y., Diner, A.M., Karnosky, D.F. 1991.Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer:Larix deciduas [J]. In Vitro Cell Dev. Biol.,27P: 201–207.

    Google Scholar 

  • Jouanin, L., Brasileiro, A.C.M., Leple, J.C., Pilate, G., Cornu, D. 1993. Genetic transformation: a short review of methods and their applications, results and perspectives for forest trees [J]. Ann Sci For,50: 325–336.

    Article  Google Scholar 

  • Klopfenstein, N.B., McNabb, Jr, Hart, E.R., Hall, R.B., Hanna, R.D., Heuchelin, S.A., Allen, K., Shi, N.Q., and Thomburg, R.W. 1993. Transformation ofPopulus hybrids to study and improve pest resistance [J]. Silvae Genetica,42: 86–90.

    Google Scholar 

  • Koziel, M.G., Beland, G.L., Bowman, C., Carozzi, N.B., Crenshaw, R., Crossland, L., Dawson, J., Desai, N., Hill, M., Kadwell, S., Launis, K., Lewis, K., Maddox, D., McPherson, K., Meghji, M.R., Merlin, E., Rhodes, R., Warren, G.W., Wright, M., and Evola, S.V. 1993. Field performance of elite transgenic maize plants expressing an insectioncidal protein derived fromBacillus thuringiensis [J]. Bio/Technology,11: 194–200.

    Article  CAS  Google Scholar 

  • Krattiger, A.F. 1997. Insect Resistance in Crops: A Case Study ofBacillus thuringiensis (Bt) and its Transfer to Developing Countries [R]. ISAAA Briefs No. 2. ISAAA: Ithaca, NY. pp. 42.

    Google Scholar 

  • Krieg, A., Franz, J.M. 1989. Lehrbuch der biologischen Schädlingsbekämpfung [M]. Berlin und Hamburg: Verlag Paul Parey.

    Google Scholar 

  • Krieg, A., Huger, A.M. 1986. Symposium in memoriam Dr. Ernst Berliner, Darmstadt 25.8.1986. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, Heft 233

  • Kumar, P.A., Sharma, R.P., Malik, V.S. 1997. The Insecticidal Proteins ofBacillus thuringiensis [J]. Advances in Applied Microbiology42: 1–43

    Article  Google Scholar 

  • Lapierre, C., Pollet, B., Petit-Conil, M., Toval, G., Romero, J., Pilate, G., Leplé JC, Boerjan, W., Ferret, V., De Nadai, V., Jouanin, L. 1999. Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-Methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping [J]. Plant Physiol.,119: 153–164.

    Article  PubMed  CAS  Google Scholar 

  • Lereclus, D., Delécluse, A., Lecadet, M.M. 1993. Diversity ofBacillus thuringiensis Toxins and Genes [C]. In: Entwistleet al. (eds) a. a. O.,, S. 255–267.

    Google Scholar 

  • Malik, V.S. 1997. The Insecticidal Proteins ofBacillus thuringiensis [J]. Advances in Applied Microbiology,42: 1–43.

    Google Scholar 

  • Mason, C.E., Rice, M.E., Calvin, D.D., Van Duyn, J.W., Showers, W.B., Hutchison, W.D., Witkowski, J.F., Higgins, R.A., Onstad, D.W., and Dively, G.P. 1996. European corn borer ecology and management [M]. NC Regional Extension Publ. 327. Iowa State University, Ames.

    Google Scholar 

  • Marrone PG and MacIntosh S.C. 1993. Resistance toBacillus thuringiensis and Resistance Management. In: Entwistleet al (eds) a.a.O.,, S. 221–235.

    Google Scholar 

  • McGaughey, W.H. & Whalon, M.E. 1992. Managing insect resistance toBacillus thuringiensis toxins [J]. Science,258: 1451–1455.

    Article  PubMed  CAS  Google Scholar 

  • Metz, T.M., Tang, J.D., Shelton, A.M., Roush, R.T. & Earle, E.D. 1995. Transgenic broccoliexpressing aBacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies [J]. Mol. Breeding,1: 309–317.

    Article  CAS  Google Scholar 

  • Munkvold, G.P., Hellmich, R.L., and Showers, W.B. 1997. Reduced Fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance [J]. Phytopathology,87: 1071–1077.

    Article  PubMed  CAS  Google Scholar 

  • Munkvold, G.P., Hellmich, R.L., and Rice, L.G. 1999. Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybrids [J]. Plant Dis.,83: 130–138.

    Article  Google Scholar 

  • Perlak, F.J., Fuchs, R.L., Dean, D.A., McPherson, S.L., Fischhoff, D.A. 1991. Modification of the coding sequence enhances plant expression of insect control protein genes [J]. Proc. Natl. Acad. Sci. USA,88: 3324–3328.

    Article  PubMed  CAS  Google Scholar 

  • Rice, L.G., Ross, P.F., DeJong, J., Plattner, R.D., and Coats, J.R. 1995. Evaluation of a liquid chromatographic method for the determination of fumonisins in corn, poultry feed, andFusarium culture material [J]. J. AOAC Int.,78: 1002–1009.

    PubMed  CAS  Google Scholar 

  • Roush, R.T. 1997.Bt-transgenic crops: just another pretty insecticide or a chance for a new start in resistance management? [J]. Pesticide Sci.,51: 328–334.

    Article  CAS  Google Scholar 

  • Roush, R.T. & Shelton, A.M. 1997. Assessing the odds; the emergence of resistance toBt transgenic plants [J]. Nat. Biotechnol.,15: 816–817.

    Article  PubMed  CAS  Google Scholar 

  • Sedlacek, J.D., Komaravalli, S.R., Hanley, A.M., Price, B.D., Davis, P.M. 2001. Life history attributes of Indian meal moth (Lepidoptera: Pyralidae) and Angoumois grain moth (Lepidoptera: Gelechiidae) reared on transgenic corn kernels [J]. J. Econ. Entomol.,94(2): 586–592.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, A.M. 1993. Resistance of diamondback moth (Lepidoptera: Plutellidae) toBacillus thuringiensis subspecies in the field [J]. J. Econ. Entomol.,86: 697–705.

    Google Scholar 

  • Stomp, A.M., Loopstra, C., Chilton, W.S., Sederoff, R.R., Moore, L.W. 1990. Extended host range ofAgrobacterium tumefaciens in the genusPinus [J]. Plant Physiol.,92: 1226–1232.

    PubMed  CAS  Google Scholar 

  • Strauss, S.H., Rottmann, W.H., Brunner, A.M., Sheppard, L.A. 1995. Genetic engineering of reproductive sterility in forest trees [J]. Mol Breed,1: 5–26.

    Article  CAS  Google Scholar 

  • Tabashnik, B.E. 1994. Evolution of resistance toBacillus thuringiensis [J]. Annual Review of Entomology, 39: 47–79.

    Article  Google Scholar 

  • Tabashnik, B.E., Liu, Y.B., Finson, N., Masson, L., Heckel, D.G. 1997. One gene in diamondback moth confers resistance to fourBacillus thuringiensis toxins [J]. Proceedings of the National Academy of Sciences of the USA,94: 1640–1644.

    Article  PubMed  CAS  Google Scholar 

  • Talekar, N.T. & Shelton, A.M. 1993. Biology, ecology and management of the diamondback moth [J]. Ann. Rev. Entomol.,38: 275–301.

    Article  Google Scholar 

  • Tang, J.D. 1999. Survival, weight gain, and oviposition of resistant and susceptible Plutella xylostella (L.) (Lepidoptera: Plutellidae) on broccoli expressing Cry1Ac toxin ofBacillus thuringiensis [J]. J. Econ. Entomol.,92: 47–55.

    CAS  Google Scholar 

  • Tang, W. 2002. Regeneration of transgenic loblolly pine expressing for salt tolerance [J]. Journal of Forestry Research,13(1): 1–6

    Google Scholar 

  • Tang, W., Sederoff, R., Whetten, R. 2001. Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed withAgrobacterium tumefaciens [J]. Planta,213: 981–989.

    PubMed  CAS  Google Scholar 

  • Tiang, Y., Li, T., Mang, K., Han, Y., Li, L., Wang, X., Lu, M., Dai, L., Han, Y., Yan, J., Gabriel, D.W. 1994. Insect tolerance of transgenic 66.Populus nigra plants transformed withBacillus thuringiensis toxin gene [J]. Chin. J. Biotech.,9: 219–227.

    Google Scholar 

  • Tzfira, T., Yarnitzky, O., Vainstein, A., Altman, A. 1996.Agrobacterium rhizogenes-mediated DNA transfer inPinus halepensis[J]. Plant Cell Rep.,16: 26–31.

    CAS  Google Scholar 

  • Tzfira, T., Zuker, A., Altman, A. 1998. Forest-tree biotechnology: genetic transformation and its application to future forests [J]. Tib Tech.,16: 439–446.

    CAS  Google Scholar 

  • Walter, C., Grace, L.J., Wagner, A., White, D.W.R., Walden, A.R., Donaldson, S.S., Hinton, H., Gardner, R.C., Smith, D.R. 1998. Stable transformation and regeneration of transgenic plants ofPinus radiata D. Don [J]. Plant Cell Rep.,17: 460–468.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tang Wei.

Additional information

Biography: Tang Wei (1964-), male, Ph. Doctor, Research associate, Department of Biology, Howell Science Complex, East Carelina University, Greenville, NC 27858-4353, USA.

Responsible editor: Chal Ruihai

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, T., Harris, L. & Newton, R.J. Plant biotechnology: A case study ofBacillus thuringiensis (Bt) and its application to the future of genetic engineered trees. Journal of Forestry Research 15, 1–10 (2004). https://doi.org/10.1007/BF02858002

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02858002

Key words

CLC number

Document code