[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Biotechnological Applications in Horticultural Entomology

  • Chapter
  • First Online:
Trends in Horticultural Entomology
  • 1681 Accesses

Abstract

Biotechnology applications include conventional biotechnology products and modern genetic engineering-based products. Conventional biotechnology products comprise the bio-agents and biopesticides (microbial agents, natural enemies, parasitoids and parasites and botanicals). Biopesticides refer to entomopathogenic bacteria, entomopathogenic fungi, baculoviruses, entomopathogenic nematodes etc. The advancement in modern biotechnology plays a major role in the pest management via increased production of biopesticides and improved protocol for the mass production. The promise of biotechnology as an instrument of development lies in its capacity to improve the quantity and quality of plants and biocontrol agents quickly and effectively. Genetic engineering application includes engineering of crop plants for insect resistance, genetic engineering of metabolic pathways, inducible resistance and gene switches, marker-assisted selection for insect/disease resistance in host plants, genetic engineering of insects, dominant repressible lethal genetic system, genetic engineering of natural enemies and genetic engineering or microbial pesticides. The advancement in biotechnology played a major role in the pest management. Biotechnology application in plant protection can also be broadly divided into two categories namely (a) characterization of pests and (b) management of pests. With the advent of molecular biology tools DNA fingerprinting & DNA barcoding, and insect pests and their natural enemies are accurately and quickly diagnosed. Biotechnological tools increase the efficacy of biopesticides and natural enemies and increase the levels of host plant resistance to insects through genetic engineering and gene pyramiding for sustainable crop protection and environment conservation. Modern biotech tools are useful in monitoring of insect resistance to insecticides, development of new pesticide molecules. Maternally inherited endosymbionts spread through populations by increasing relative fitness of infected females. They achieve this by increasing the fecundity and or survival of infected females relative to uninfected females through metabolic processes thereby providing benefit to both the host and symbiont (in a mutualistic association). They may prove to be useful for biological manipulations of the parasitoid as possible transgene drivers. These bacteria can drive particular mtDNA haplotypes through populations and alter reproductive biology. Rapid advances in DNA-based technologies have expanded the range of possibilities for the utilization of Wolbachia for such long-term goals. Wolbachia may prove to be useful agents for biological manipulations of insect species, for instance by driving the spread of genes conferring susceptibility to parasitoids or pesticides. The functions of different genes are involved in morphogenesis, behaviour, reproduction and detoxification of chemicals in insects. RNAi has been used to manage the viral diseases or parasites of beneficial insects. RNAi-based products for management of insect pests will be highly specific. RNAi-based biopesticides may come to the market in the form of transgenic plants, sprayable formulation, stem injections, seed treatment etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alphey, L., & Andreasen, M. (2002). Dominant lethality and insect population control. Molecular and Biochemical Parasitology, 121, 173–178.

    CAS  PubMed  Google Scholar 

  • Atkinson, P. V., & O'Brochta, D. A. (1999). Genetic transformation of non-drosophilid insects by transposable elements. Annals of the Entomological Society of America, 92, 930–936.

    Google Scholar 

  • Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322–1326.

    CAS  PubMed  Google Scholar 

  • Bell, H. A., Fitches, E. C., Down, R. E., Ford, L., Marris, G. C., Edwards, J. P., Gatehouse, J. A., & Gatehouse, A. M. (2001). Effect of dietary cowpea trypsin inhibitor (CpTI) on the growth and development of the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae) and on the success of the gregarious ectoparasitoid Eulophus pennicornis (Hymenoptera: Eulophidae). Pest Management Science, 57, 57–65.

    CAS  PubMed  Google Scholar 

  • Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49, 423–435.

    CAS  PubMed  Google Scholar 

  • Cagliari, D., Dias, N., Galdeano, D. M., dos Santos, E. A., Smagghe, G., & Zotti, M. (2019). Management of Pest Insects and Plant Diseases by non-transformative RNAi. Frontiers in Plant Science, 10, 1319.

    PubMed  PubMed Central  Google Scholar 

  • Catcrino, M. S., Cho, S., & Sperling, F. A. (2000). The current state of insect molecular systematics: A thriving tower of Babel. Annual Review of Entomology, 45, 1–54.

    Google Scholar 

  • Chen, L., Wang, G., Zhu, Y. N., Xiang, H., & Wang, W. (2016). Advances and perspectives in the application of CRISPR/Cas9 in insects. Zoological Research, 37(4), 220–228.

    CAS  PubMed  Google Scholar 

  • Chung, S. H., Jing, X., Luo, Y., & Douglas, A. E. (2018). Targeting symbiosis-related insect genes by RNAi in the pea aphid-Buchnera symbiosis. Insect Biochemistry Molecular Biology, 95, 55–63.

    CAS  PubMed  Google Scholar 

  • Clemens, J. C., Worley, C. A., Leff, N. S., Merda, M., Maehama, T., Hemmings, B. A., & Dixon, J. E. (2000). Use of double-stranded RNA interference in drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Sciences of the United States of America, 97, 6499–6450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cory, J. S., Hirst, M. L., Williams, T., Hails, R. S., Goulson, D., Green, B. M., Carty, T. M., Possee, R. D., Cayley, P. J., & Bishop, D. H. L. (1994). Field trials of a genetically improved baculovirus insecticide. Nature, 370, 138–140.

    Google Scholar 

  • Dong, K., Sun, L., Liu, J. T., Gu, S. H., Zhou, J. J., Yang, R. N., Dhiloo, K. H., Gao, X. W., Guo, Y. Y., & Zhang, Y. J. (2017). RNAi-induced electrophysiological and behavioral changes reveal two pheromone binding proteins of Helicoverpa armigera involved in the perception of the main sex pheromone component Z11- 16:Ald. Journal of Chemical Ecology, 43(2), 207–214.

    CAS  PubMed  Google Scholar 

  • Dulmage, H. D. (1970). Insecticidal activity ofHD-l, a new isolate of Bacillus thuringiensis var. alesti. Journal of Invertebrate Pathology, 15, 232–239.

    Google Scholar 

  • Ganbaatar, O., Cao, B., Zhang, Y., Bao, D., Bao, W., & Wuriyanghan, H. (2017). Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnology, 17, 9.

    PubMed  PubMed Central  Google Scholar 

  • Gatehouse, A. M. R., Davison, G. M., Newell, C. A., Merryweather, A., Hamilton, W. D. O., Burgess, E. P. J., Gilbert, R. J. C., & Gatehouse, J. A. (1997). Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: Growth room trials. Molecular Breeding, 3, 49–63.

    CAS  Google Scholar 

  • Gong, L., Chen, Y., Hu, Z., & Hu, M. (2013). Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS One, 8, 1–8.

    Google Scholar 

  • Grover, S., Jindal, V., Banta, G., Tanning, C. N. T., Smagghe, G., & Christiaens, O. (2018). Potential of RNA interference in the study and management of whitefly, Bemisia tabaci. Archives of Insect Biochemistry and Physiology, e21522, 1–17.

    Google Scholar 

  • Haq, S. K., Atif, S. M., & Khan, R. H. (2004). Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: Natural and engineered phytoprotection. Archives of Biochemistry and Biophysics, 431, 145–159.

    CAS  PubMed  Google Scholar 

  • Harsulkar, A. M., Giri, A. P., Patankar, A. G., Gupta, V. S., Sainani, M. N., Ranjekar, P. K., & Deshpande, V. V. (1999). Successive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth. Plant Physiology, 121, 497–506.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Head, G. P., Carroll, M. W., Evans, S. P., Rule, D. M., Willse, A. R., Clark, T. L., Storer, N. P., Flannagan, R. D., Samuel, L. W., & Meinke, L. J. (2017). Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: Efficacy and resistance management. Pest Management Science, 73, 1883–1899.

    CAS  PubMed  Google Scholar 

  • Heckel, D. C. (2003). Genomics in pure and applied entomology. Annual Review of Entomology, 48, 235–260.

    CAS  PubMed  Google Scholar 

  • Hess, F. D., Anderson, R. J., & Reagan, J. D. (2001). High throughput synthesis and screening: The partner of genomics for discovery of new chemicals for agriculture. Weed Science, 49, 249–256.

    CAS  Google Scholar 

  • Hilder, V. A., Gatehouse, A. M., Sheerman, S. E., Barker, R. F., & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, 300, 160–163.

    Google Scholar 

  • Hoy, M. A. (2000). Transgenic arthropods for pest management programs: Risks and realities. Experimental and Applied Acarology, 24, 163–495.

    Google Scholar 

  • Hunt, S. P., & Livesey, F. J. (2000). Functional genomics: A practical approach (p. 253). Oxford Universuty Press.

    Google Scholar 

  • Hunter, W. B., Glick, E., Paldi, N., & Bextine, B. R. (2012). Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. South West Entomology, 37, 85–87.

    Google Scholar 

  • Inbar, M., Doodstar, H., Sonoda, R. M., Leibee, & Mayer, R. T. (1998). Elicitors of plant defensive systems reduce in sect densities and disease incidence. Journal of Chemical Ecology, 24, 135–149.

    CAS  Google Scholar 

  • Jalali, S. K., Singh, S. P., Venkatesan, T., Murthy, K. S., & Lalitha, Y. (2006). Development of endosulfan tolerant strain of an egg parasitoid Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae). Indian Journal of Experimental Biology, 44(7), 584–590.

    CAS  PubMed  Google Scholar 

  • James, C. (2009). Global status of commercialised biotech GM crops: 2008.ISAAA Brief No. 39. International Service for the Acquisition of Agri-Biotech Applications, ISAAA: Ithaca, NY, USA, 275p.

    Google Scholar 

  • Karban, R., & Baldwin, I. T. (1997). Induced responses of herbivory (330). The University of Chicago Press.

    Google Scholar 

  • Kokoza, V., Ahmed, A., Woon Shin, S., Okafor, N., Zou, Z., & Raikhel, A. S. (2010). Blocking of plasmodium transmission by cooperative action of cecropin a and defensin a in transgenic Aedes aegypti mosquitoes. Proceedings of National Academic Science USA, 107, 8111–8116.

    CAS  Google Scholar 

  • Kola, V. S. R., Renuka, P., Padmakumari, A. P., Mangrauthia, S. K., Balachandran, S. M., & Ravindra, B. V. (2016). Silencing of CYP6 and APN genes affects the growth and development of rice yellow stem borer, Scirpophaga incertulas. Frontiers in Physiology, 7, 20.

    PubMed  PubMed Central  Google Scholar 

  • Korb, J., Weil, T., Hoffmann, K., Foster, K. R., & Rehli, M. (2009). A gene necessary for reproductive suppression in termites. Science, 324, 758.

    CAS  PubMed  Google Scholar 

  • Lambert, B., & Peferoen, M. (1992). Insecticidal promise of Bacillus thuringiensis. Bioscience, 42, 112–121.

    Google Scholar 

  • Lee, J. B., Park, K. E., Lee, S. A., Jang, S. H., Eo, H. J., Jang, H. A., Kim, C. H., Ohbayashi, T., Matsuura, Y., Kikuchi, Y., Futahashi, R., Fukatsu, T., & Lee, B. L. (2017). Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Developmental and Comparative Immunology, 69, 12–22.

    CAS  PubMed  Google Scholar 

  • Li, J., Li, X., Bai, R., Shi, Y., Tang, Q., An, S., Song, Q., & Yan, F. (2014). RNA interference of the P450 CYP6CM1 gene has different efficacy in B and Q biotypes of Bemisia tabaci. Pest Management Science, 71, 1175–1181.

    PubMed  Google Scholar 

  • McClintock, J. T., van Beek, N. A. M., Kough, J. L., Mendelsohn, M. L., & Hutton, P. O. (2000). Regulatory aspects of biological control agents and products derived by biotechnology. In J. E. Rechcigl & N. A. Rechcigl (Eds.), Biological and biotechnological control of insect pests (pp. 305–357). Lewis Publishers.

    Google Scholar 

  • Mitter, N., Worrall, E. A., Robinson, K. E., Xu, Z. P., & Carroll, B. J. (2017). Induction of virus resistance by exogenous application of double-stranded RNA. Current Opinion in Virology, 26, 49–55.

    CAS  PubMed  Google Scholar 

  • Navon, A. (2000). Bacillus thuringiensis insecticides in crop protection.—Reality and prospects. Crop Protection, 19, 669–676.

    Google Scholar 

  • Neale, M. C. (1997). Bio-pesticides - harmonization of registration requirements within EU directive 91-414. An industry view. Bulletin OEPP, 27, 89–93.

    Google Scholar 

  • Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71, 255–281.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sammons, R. D., New Melle, M. O., Ivashuta S., Ballwin, M. O., Liu, H., Louis, M. O. S. T., Wang, D., Louis, M. O. S. T., Feng, P. C. C., Wildwood, M. O., Kouranov, A. Y., Chesterfield, M. O., Andersen, S. E. and Manchester, M. O. (2011). Polynucleotide molecules for gene regulation in plants. U.S. Pat. 2011/0296556 A1 1,135p.

    Google Scholar 

  • Sharma, H. C. (2009). Biotechnological approaches for pest management and ecological sustainability (p. 526). CRC Press.

    Google Scholar 

  • Sharma, H. C., Crouch, J. H., Sharma, K. K., Seetharama, N., & Hash, C. T. (2002). Applications of biotechnology for crop improvement: Prospects and constraints. Plant Science, 163, 38J-395.

    Google Scholar 

  • Sharma, H. C., Sharma, K. K., & Crouch, J. H. (2004). Genetic engineering of crops for insect control: Effectiveness and strategies for gene deployment. CRC Critical Reviews in Plant Sciences, 23, 47–72.

    CAS  Google Scholar 

  • Sharma, H. C., & Rodomiro, O. (2002). Host plant resistance to insects: An eco-friendly approach for pest management and environment conservation. Journal of Environmental Biology, 23(2), 111–135.

    CAS  PubMed  Google Scholar 

  • Sivakumar, S., Rajagopal, R., Venkatesh, G. R., Srivastava, A., & Bhatnagar, R. K. (2007). Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. The Journal of Biological Chemistry, 282, 7312–7319.

    CAS  PubMed  Google Scholar 

  • Smigocki, A., Heu, S., & Buta, C. (2000). Analysis of insecticidal activity in transgenic plants carrying the ipt plant growth hormone gene. XIV meeting of the EUCARP1A Tomato Working Group, Warsaw Poland, 20-24 August 2000. Acta Plantarum, 22, 295–299.

    CAS  Google Scholar 

  • Stout, M. J., Workman, J., & Duffey, S. S. (1996). Differential induction of foliar proteins by arthropod herbivores. Journal of Chemical Ecology, 20, 2575–2594.

    Google Scholar 

  • Tar'an, S., Thomas, E., Michaels, T. E., & Pauls, K. P. (2003). Marker assisted selection for complex trait in common bean(Phaseolus vulgaris L.) using QTL-based index. Euphytica, 130, 423–433.

    CAS  Google Scholar 

  • Vikas, J., & Sajjan, G. (2019). Applications of RNA interference in insect pest management. Agricultural Research, 56(3), 378–391.

    Google Scholar 

  • War, A. H., Paulraj, M. G., Tariq, A., Buhroo, A. A., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbevores. Plant Signalling and Behavior, 7, 1306–1320.

    Google Scholar 

  • Webb, B. A. and Cui, L. (1998). Viral and insect genes that inhibit the immune system and methods of use thereof. United States Patent No. 5,827,518.

    Google Scholar 

  • Wheeler, Q. D., Raven, P. H., & Wilson, E. O. (2004). Taxonomy: Impediment or expedient? Science, 303, 285.

    CAS  PubMed  Google Scholar 

  • Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54, 844–851.

    PubMed  Google Scholar 

  • Xu, D., Xue, Q., McElroy, D., Mawal, Y., Hilder, V. A., & Wu, R. (1996). Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice insect pests. Molecular Breeding, 2, 167–173.

    CAS  Google Scholar 

  • Zotti, M., Ad, S. E., Cagliari, D., Christiaens, O., Taning, C. N. T., & Smagghe, G. (2018). RNA interference technology in crop protection against arthopods pests, pathogens and nematodes. Pest Management Science, 74, 1239–1250.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gandhi Gracy, R., Mani, M., Swathi, R.S., Venkatesan, T., Mohan, M. (2022). Biotechnological Applications in Horticultural Entomology. In: Mani, M. (eds) Trends in Horticultural Entomology . Springer, Singapore. https://doi.org/10.1007/978-981-19-0343-4_6

Download citation

Publish with us

Policies and ethics