Abstract
Biotechnology applications include conventional biotechnology products and modern genetic engineering-based products. Conventional biotechnology products comprise the bio-agents and biopesticides (microbial agents, natural enemies, parasitoids and parasites and botanicals). Biopesticides refer to entomopathogenic bacteria, entomopathogenic fungi, baculoviruses, entomopathogenic nematodes etc. The advancement in modern biotechnology plays a major role in the pest management via increased production of biopesticides and improved protocol for the mass production. The promise of biotechnology as an instrument of development lies in its capacity to improve the quantity and quality of plants and biocontrol agents quickly and effectively. Genetic engineering application includes engineering of crop plants for insect resistance, genetic engineering of metabolic pathways, inducible resistance and gene switches, marker-assisted selection for insect/disease resistance in host plants, genetic engineering of insects, dominant repressible lethal genetic system, genetic engineering of natural enemies and genetic engineering or microbial pesticides. The advancement in biotechnology played a major role in the pest management. Biotechnology application in plant protection can also be broadly divided into two categories namely (a) characterization of pests and (b) management of pests. With the advent of molecular biology tools DNA fingerprinting & DNA barcoding, and insect pests and their natural enemies are accurately and quickly diagnosed. Biotechnological tools increase the efficacy of biopesticides and natural enemies and increase the levels of host plant resistance to insects through genetic engineering and gene pyramiding for sustainable crop protection and environment conservation. Modern biotech tools are useful in monitoring of insect resistance to insecticides, development of new pesticide molecules. Maternally inherited endosymbionts spread through populations by increasing relative fitness of infected females. They achieve this by increasing the fecundity and or survival of infected females relative to uninfected females through metabolic processes thereby providing benefit to both the host and symbiont (in a mutualistic association). They may prove to be useful for biological manipulations of the parasitoid as possible transgene drivers. These bacteria can drive particular mtDNA haplotypes through populations and alter reproductive biology. Rapid advances in DNA-based technologies have expanded the range of possibilities for the utilization of Wolbachia for such long-term goals. Wolbachia may prove to be useful agents for biological manipulations of insect species, for instance by driving the spread of genes conferring susceptibility to parasitoids or pesticides. The functions of different genes are involved in morphogenesis, behaviour, reproduction and detoxification of chemicals in insects. RNAi has been used to manage the viral diseases or parasites of beneficial insects. RNAi-based products for management of insect pests will be highly specific. RNAi-based biopesticides may come to the market in the form of transgenic plants, sprayable formulation, stem injections, seed treatment etc.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alphey, L., & Andreasen, M. (2002). Dominant lethality and insect population control. Molecular and Biochemical Parasitology, 121, 173–178.
Atkinson, P. V., & O'Brochta, D. A. (1999). Genetic transformation of non-drosophilid insects by transposable elements. Annals of the Entomological Society of America, 92, 930–936.
Baum, J. A., Bogaert, T., Clinton, W., Heck, G. R., Feldmann, P., Ilagan, O., Johnson, S., Plaetinck, G., Munyikwa, T., Pleau, M., Vaughn, T., & Roberts, J. (2007). Control of coleopteran insect pests through RNA interference. Nature Biotechnology, 25, 1322–1326.
Bell, H. A., Fitches, E. C., Down, R. E., Ford, L., Marris, G. C., Edwards, J. P., Gatehouse, J. A., & Gatehouse, A. M. (2001). Effect of dietary cowpea trypsin inhibitor (CpTI) on the growth and development of the tomato moth Lacanobia oleracea (Lepidoptera: Noctuidae) and on the success of the gregarious ectoparasitoid Eulophus pennicornis (Hymenoptera: Eulophidae). Pest Management Science, 57, 57–65.
Bravo, A., Gill, S. S., & Soberón, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49, 423–435.
Cagliari, D., Dias, N., Galdeano, D. M., dos Santos, E. A., Smagghe, G., & Zotti, M. (2019). Management of Pest Insects and Plant Diseases by non-transformative RNAi. Frontiers in Plant Science, 10, 1319.
Catcrino, M. S., Cho, S., & Sperling, F. A. (2000). The current state of insect molecular systematics: A thriving tower of Babel. Annual Review of Entomology, 45, 1–54.
Chen, L., Wang, G., Zhu, Y. N., Xiang, H., & Wang, W. (2016). Advances and perspectives in the application of CRISPR/Cas9 in insects. Zoological Research, 37(4), 220–228.
Chung, S. H., Jing, X., Luo, Y., & Douglas, A. E. (2018). Targeting symbiosis-related insect genes by RNAi in the pea aphid-Buchnera symbiosis. Insect Biochemistry Molecular Biology, 95, 55–63.
Clemens, J. C., Worley, C. A., Leff, N. S., Merda, M., Maehama, T., Hemmings, B. A., & Dixon, J. E. (2000). Use of double-stranded RNA interference in drosophila cell lines to dissect signal transduction pathways. Proceedings of the National Academy of Sciences of the United States of America, 97, 6499–6450.
Cory, J. S., Hirst, M. L., Williams, T., Hails, R. S., Goulson, D., Green, B. M., Carty, T. M., Possee, R. D., Cayley, P. J., & Bishop, D. H. L. (1994). Field trials of a genetically improved baculovirus insecticide. Nature, 370, 138–140.
Dong, K., Sun, L., Liu, J. T., Gu, S. H., Zhou, J. J., Yang, R. N., Dhiloo, K. H., Gao, X. W., Guo, Y. Y., & Zhang, Y. J. (2017). RNAi-induced electrophysiological and behavioral changes reveal two pheromone binding proteins of Helicoverpa armigera involved in the perception of the main sex pheromone component Z11- 16:Ald. Journal of Chemical Ecology, 43(2), 207–214.
Dulmage, H. D. (1970). Insecticidal activity ofHD-l, a new isolate of Bacillus thuringiensis var. alesti. Journal of Invertebrate Pathology, 15, 232–239.
Ganbaatar, O., Cao, B., Zhang, Y., Bao, D., Bao, W., & Wuriyanghan, H. (2017). Knockdown of Mythimna separata chitinase genes via bacterial expression and oral delivery of RNAi effectors. BMC Biotechnology, 17, 9.
Gatehouse, A. M. R., Davison, G. M., Newell, C. A., Merryweather, A., Hamilton, W. D. O., Burgess, E. P. J., Gilbert, R. J. C., & Gatehouse, J. A. (1997). Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea: Growth room trials. Molecular Breeding, 3, 49–63.
Gong, L., Chen, Y., Hu, Z., & Hu, M. (2013). Testing insecticidal activity of novel chemically synthesized siRNA against Plutella xylostella under laboratory and field conditions. PLoS One, 8, 1–8.
Grover, S., Jindal, V., Banta, G., Tanning, C. N. T., Smagghe, G., & Christiaens, O. (2018). Potential of RNA interference in the study and management of whitefly, Bemisia tabaci. Archives of Insect Biochemistry and Physiology, e21522, 1–17.
Haq, S. K., Atif, S. M., & Khan, R. H. (2004). Protein proteinase inhibitor genes in combat against insects, pests, and pathogens: Natural and engineered phytoprotection. Archives of Biochemistry and Biophysics, 431, 145–159.
Harsulkar, A. M., Giri, A. P., Patankar, A. G., Gupta, V. S., Sainani, M. N., Ranjekar, P. K., & Deshpande, V. V. (1999). Successive use of non-host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinases and larval growth. Plant Physiology, 121, 497–506.
Head, G. P., Carroll, M. W., Evans, S. P., Rule, D. M., Willse, A. R., Clark, T. L., Storer, N. P., Flannagan, R. D., Samuel, L. W., & Meinke, L. J. (2017). Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: Efficacy and resistance management. Pest Management Science, 73, 1883–1899.
Heckel, D. C. (2003). Genomics in pure and applied entomology. Annual Review of Entomology, 48, 235–260.
Hess, F. D., Anderson, R. J., & Reagan, J. D. (2001). High throughput synthesis and screening: The partner of genomics for discovery of new chemicals for agriculture. Weed Science, 49, 249–256.
Hilder, V. A., Gatehouse, A. M., Sheerman, S. E., Barker, R. F., & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature, 300, 160–163.
Hoy, M. A. (2000). Transgenic arthropods for pest management programs: Risks and realities. Experimental and Applied Acarology, 24, 163–495.
Hunt, S. P., & Livesey, F. J. (2000). Functional genomics: A practical approach (p. 253). Oxford Universuty Press.
Hunter, W. B., Glick, E., Paldi, N., & Bextine, B. R. (2012). Advances in RNA interference: dsRNA treatment in trees and grapevines for insect pest suppression. South West Entomology, 37, 85–87.
Inbar, M., Doodstar, H., Sonoda, R. M., Leibee, & Mayer, R. T. (1998). Elicitors of plant defensive systems reduce in sect densities and disease incidence. Journal of Chemical Ecology, 24, 135–149.
Jalali, S. K., Singh, S. P., Venkatesan, T., Murthy, K. S., & Lalitha, Y. (2006). Development of endosulfan tolerant strain of an egg parasitoid Trichogramma chilonis Ishii (Hymenoptera: Trichogrammatidae). Indian Journal of Experimental Biology, 44(7), 584–590.
James, C. (2009). Global status of commercialised biotech GM crops: 2008.ISAAA Brief No. 39. International Service for the Acquisition of Agri-Biotech Applications, ISAAA: Ithaca, NY, USA, 275p.
Karban, R., & Baldwin, I. T. (1997). Induced responses of herbivory (330). The University of Chicago Press.
Kokoza, V., Ahmed, A., Woon Shin, S., Okafor, N., Zou, Z., & Raikhel, A. S. (2010). Blocking of plasmodium transmission by cooperative action of cecropin a and defensin a in transgenic Aedes aegypti mosquitoes. Proceedings of National Academic Science USA, 107, 8111–8116.
Kola, V. S. R., Renuka, P., Padmakumari, A. P., Mangrauthia, S. K., Balachandran, S. M., & Ravindra, B. V. (2016). Silencing of CYP6 and APN genes affects the growth and development of rice yellow stem borer, Scirpophaga incertulas. Frontiers in Physiology, 7, 20.
Korb, J., Weil, T., Hoffmann, K., Foster, K. R., & Rehli, M. (2009). A gene necessary for reproductive suppression in termites. Science, 324, 758.
Lambert, B., & Peferoen, M. (1992). Insecticidal promise of Bacillus thuringiensis. Bioscience, 42, 112–121.
Lee, J. B., Park, K. E., Lee, S. A., Jang, S. H., Eo, H. J., Jang, H. A., Kim, C. H., Ohbayashi, T., Matsuura, Y., Kikuchi, Y., Futahashi, R., Fukatsu, T., & Lee, B. L. (2017). Gut symbiotic bacteria stimulate insect growth and egg production by modulating hexamerin and vitellogenin gene expression. Developmental and Comparative Immunology, 69, 12–22.
Li, J., Li, X., Bai, R., Shi, Y., Tang, Q., An, S., Song, Q., & Yan, F. (2014). RNA interference of the P450 CYP6CM1 gene has different efficacy in B and Q biotypes of Bemisia tabaci. Pest Management Science, 71, 1175–1181.
McClintock, J. T., van Beek, N. A. M., Kough, J. L., Mendelsohn, M. L., & Hutton, P. O. (2000). Regulatory aspects of biological control agents and products derived by biotechnology. In J. E. Rechcigl & N. A. Rechcigl (Eds.), Biological and biotechnological control of insect pests (pp. 305–357). Lewis Publishers.
Mitter, N., Worrall, E. A., Robinson, K. E., Xu, Z. P., & Carroll, B. J. (2017). Induction of virus resistance by exogenous application of double-stranded RNA. Current Opinion in Virology, 26, 49–55.
Navon, A. (2000). Bacillus thuringiensis insecticides in crop protection.—Reality and prospects. Crop Protection, 19, 669–676.
Neale, M. C. (1997). Bio-pesticides - harmonization of registration requirements within EU directive 91-414. An industry view. Bulletin OEPP, 27, 89–93.
Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71, 255–281.
Sammons, R. D., New Melle, M. O., Ivashuta S., Ballwin, M. O., Liu, H., Louis, M. O. S. T., Wang, D., Louis, M. O. S. T., Feng, P. C. C., Wildwood, M. O., Kouranov, A. Y., Chesterfield, M. O., Andersen, S. E. and Manchester, M. O. (2011). Polynucleotide molecules for gene regulation in plants. U.S. Pat. 2011/0296556 A1 1,135p.
Sharma, H. C. (2009). Biotechnological approaches for pest management and ecological sustainability (p. 526). CRC Press.
Sharma, H. C., Crouch, J. H., Sharma, K. K., Seetharama, N., & Hash, C. T. (2002). Applications of biotechnology for crop improvement: Prospects and constraints. Plant Science, 163, 38J-395.
Sharma, H. C., Sharma, K. K., & Crouch, J. H. (2004). Genetic engineering of crops for insect control: Effectiveness and strategies for gene deployment. CRC Critical Reviews in Plant Sciences, 23, 47–72.
Sharma, H. C., & Rodomiro, O. (2002). Host plant resistance to insects: An eco-friendly approach for pest management and environment conservation. Journal of Environmental Biology, 23(2), 111–135.
Sivakumar, S., Rajagopal, R., Venkatesh, G. R., Srivastava, A., & Bhatnagar, R. K. (2007). Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. The Journal of Biological Chemistry, 282, 7312–7319.
Smigocki, A., Heu, S., & Buta, C. (2000). Analysis of insecticidal activity in transgenic plants carrying the ipt plant growth hormone gene. XIV meeting of the EUCARP1A Tomato Working Group, Warsaw Poland, 20-24 August 2000. Acta Plantarum, 22, 295–299.
Stout, M. J., Workman, J., & Duffey, S. S. (1996). Differential induction of foliar proteins by arthropod herbivores. Journal of Chemical Ecology, 20, 2575–2594.
Tar'an, S., Thomas, E., Michaels, T. E., & Pauls, K. P. (2003). Marker assisted selection for complex trait in common bean(Phaseolus vulgaris L.) using QTL-based index. Euphytica, 130, 423–433.
Vikas, J., & Sajjan, G. (2019). Applications of RNA interference in insect pest management. Agricultural Research, 56(3), 378–391.
War, A. H., Paulraj, M. G., Tariq, A., Buhroo, A. A., Ignacimuthu, S., & Sharma, H. C. (2012). Mechanisms of plant defense against insect herbevores. Plant Signalling and Behavior, 7, 1306–1320.
Webb, B. A. and Cui, L. (1998). Viral and insect genes that inhibit the immune system and methods of use thereof. United States Patent No. 5,827,518.
Wheeler, Q. D., Raven, P. H., & Wilson, E. O. (2004). Taxonomy: Impediment or expedient? Science, 303, 285.
Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54, 844–851.
Xu, D., Xue, Q., McElroy, D., Mawal, Y., Hilder, V. A., & Wu, R. (1996). Constitutive expression of a cowpea trypsin inhibitor gene, CpTi, in transgenic rice plants confers resistance to two major rice insect pests. Molecular Breeding, 2, 167–173.
Zotti, M., Ad, S. E., Cagliari, D., Christiaens, O., Taning, C. N. T., & Smagghe, G. (2018). RNA interference technology in crop protection against arthopods pests, pathogens and nematodes. Pest Management Science, 74, 1239–1250.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Gandhi Gracy, R., Mani, M., Swathi, R.S., Venkatesan, T., Mohan, M. (2022). Biotechnological Applications in Horticultural Entomology. In: Mani, M. (eds) Trends in Horticultural Entomology . Springer, Singapore. https://doi.org/10.1007/978-981-19-0343-4_6
Download citation
DOI: https://doi.org/10.1007/978-981-19-0343-4_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-0342-7
Online ISBN: 978-981-19-0343-4
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)