Abstract
This paper investigates the performance of a novel set of Residue Number System (RNS) bases, emphasizing on the minimization of the power×delay product. The proposed bases introduce moduli of the form 3n, to the usual choice of moduli of the form 2n, 2n − 1, or 2n + 1. It is found that for particular dynamic ranges, the introduction of high-radix modulo-3n multipliers significantly improves the power×delay performance of residue multiplication, in comparison to conventional two’s-complement implementations as well as to RNS architectures using bases composed of radix-2 moduli. Experimental results demonstrate reduction of the power×delay product by almost a factor of two, for some cases.
The support by the University of Patras through the “C. Caratheodory” project under contract No B-701 is gratefully acknowledged.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stouraitis, T., Paliouras, V.: Considering the alternatives in low-power design. IEEE Circuits and Devices 17(4), 23–29 (2001)
Basetas, C., Kouretas, I., Paliouras, V.: Low-power digital filtering based on the logarithmic number system. In: Azémard, N., Svensson, L. (eds.) PATMOS 2007. LNCS, vol. 4644, pp. 546–555. Springer, Heidelberg (2007)
Taylor, F.: Residue arithmetic: A tutorial with examples. IEEE Computer, 50–62 (May 1984)
Ramirez, J., Garcia, A., Lopez-Buedo, S., Lloris, A.: RNS-enabled digital signal processor design. Electronics Letters 38, 266–268 (2002)
Ramirez, J., Fernandez, P., Meyer-Base, U., Taylor, F., Garcia, A.: Index-Based RNS DWT architecture for custom IC designs. In: IEEE Workshop on Signal Processing Systems, pp. 70–79 (2001)
Szabó, N., Tanaka, R.: Residue Arithmetic and its Applications to Computer Technology. McGraw-Hill, New York (1967)
Kelder, T., Liew, T., Hanzo, L.: Adaptive Redundant Residue Number System Coded Multicarrier Modulation. IEEE Journal on Selected Areas in Communications C-18(11), 2292–2301 (2000)
Madhukumar, A.S., Chin, F.: Enhanced architecture for residue number system-based CDMA for high-rate data transmission. IEEE Transactions on Wireless Communications 3(5), 1363–1368 (2004)
Efstathiou, C., Vergos, H.T., Nikolos, D.: Modulo 2n±1 adder design using select-prefix blocks. IEEE Transactions on Computers 52(11) (November 2003)
Hiasat, A.A.: High-speed and reduced area modular adder structures for RNS. IEEE Transactions on Computers 51(1), 84–89 (2002)
Wang, Z., Jullien, G.A., Miller, W.C.: An algorithm for multiplication modulo (2n + 1). In: Proceedings of 29th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, pp. 956–960 (1996)
Cardarilli, G., Nannarelli, A., Re, M.: Reducing Power Dissipation in FIR Filters using the Residue Number System. In: Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 1, pp. 320–323 (August 2000)
Nannarelli, A., Re, M., Cardarilli, G.C.: Tradeoffs Between Residue Number System and Traditional FIR Filters. In: Proceedings of the 2001 IEEE International Symposium on Circuits and Systems (ISCAS), vol. II, pp. 305–308 (2001)
Paliouras, V., Skavantzos, A., Stouraitis, T.: Multi-Voltage Low Power Convolvers Using the Polynomial Residue Number System. In: GLSVLSI 2002: Proceedings of the 12th ACM Great Lakes symposium on VLSI, pp. 7–11. ACM, New York (2002)
Paliouras, V., Stouraitis, T.: Novel high-radix Residue Number System architectures. IEEE Transactions on Circuits and Systems – Part II 47(10), 1059–1073 (2001)
Kouretas, I., Paliouras, V.: High-radix redundant circuits for RNS modulo r n − 1, r n, or r n + 1. In: Proceedings of the 2003 IEEE International Symposium on Circuits and Systems (ISCAS), vol. V, pp. 229–232 (May 2003)
Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., Taylor, F.J.: Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, Los Alamitos (1986)
Wallace, C.: A suggestion for a fast multiplier. IEEE Transactions on Electronic Computers EC-13, 14–17 (1964)
Landman, P.E., Rabaey, J.M.: Activity-Sensitive Architectural Power Analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15(6), 571–587 (1996)
Johansson, K., Gustafsson, O., Wanhammar, L.: Power estimation for ripple-carry adders with correlated input data. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254, pp. 662–674. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kouretas, I., Paliouras, V. (2009). Mixed Radix-2 and High-Radix RNS Bases for Low-Power Multiplication. In: Svensson, L., Monteiro, J. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2008. Lecture Notes in Computer Science, vol 5349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95948-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-95948-9_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-95947-2
Online ISBN: 978-3-540-95948-9
eBook Packages: Computer ScienceComputer Science (R0)