[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5349))

Abstract

This paper investigates the performance of a novel set of Residue Number System (RNS) bases, emphasizing on the minimization of the power×delay product. The proposed bases introduce moduli of the form 3n, to the usual choice of moduli of the form 2n, 2n − 1, or 2n + 1. It is found that for particular dynamic ranges, the introduction of high-radix modulo-3n multipliers significantly improves the power×delay performance of residue multiplication, in comparison to conventional two’s-complement implementations as well as to RNS architectures using bases composed of radix-2 moduli. Experimental results demonstrate reduction of the power×delay product by almost a factor of two, for some cases.

The support by the University of Patras through the “C. Caratheodory” project under contract No B-701 is gratefully acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stouraitis, T., Paliouras, V.: Considering the alternatives in low-power design. IEEE Circuits and Devices 17(4), 23–29 (2001)

    Article  Google Scholar 

  2. Basetas, C., Kouretas, I., Paliouras, V.: Low-power digital filtering based on the logarithmic number system. In: Azémard, N., Svensson, L. (eds.) PATMOS 2007. LNCS, vol. 4644, pp. 546–555. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Taylor, F.: Residue arithmetic: A tutorial with examples. IEEE Computer, 50–62 (May 1984)

    Google Scholar 

  4. Ramirez, J., Garcia, A., Lopez-Buedo, S., Lloris, A.: RNS-enabled digital signal processor design. Electronics Letters 38, 266–268 (2002)

    Article  Google Scholar 

  5. Ramirez, J., Fernandez, P., Meyer-Base, U., Taylor, F., Garcia, A.: Index-Based RNS DWT architecture for custom IC designs. In: IEEE Workshop on Signal Processing Systems, pp. 70–79 (2001)

    Google Scholar 

  6. Szabó, N., Tanaka, R.: Residue Arithmetic and its Applications to Computer Technology. McGraw-Hill, New York (1967)

    MATH  Google Scholar 

  7. Kelder, T., Liew, T., Hanzo, L.: Adaptive Redundant Residue Number System Coded Multicarrier Modulation. IEEE Journal on Selected Areas in Communications C-18(11), 2292–2301 (2000)

    Article  Google Scholar 

  8. Madhukumar, A.S., Chin, F.: Enhanced architecture for residue number system-based CDMA for high-rate data transmission. IEEE Transactions on Wireless Communications 3(5), 1363–1368 (2004)

    Article  Google Scholar 

  9. Efstathiou, C., Vergos, H.T., Nikolos, D.: Modulo 2n±1 adder design using select-prefix blocks. IEEE Transactions on Computers 52(11) (November 2003)

    Google Scholar 

  10. Hiasat, A.A.: High-speed and reduced area modular adder structures for RNS. IEEE Transactions on Computers 51(1), 84–89 (2002)

    Article  MathSciNet  Google Scholar 

  11. Wang, Z., Jullien, G.A., Miller, W.C.: An algorithm for multiplication modulo (2n + 1). In: Proceedings of 29th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, pp. 956–960 (1996)

    Google Scholar 

  12. Cardarilli, G., Nannarelli, A., Re, M.: Reducing Power Dissipation in FIR Filters using the Residue Number System. In: Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, vol. 1, pp. 320–323 (August 2000)

    Google Scholar 

  13. Nannarelli, A., Re, M., Cardarilli, G.C.: Tradeoffs Between Residue Number System and Traditional FIR Filters. In: Proceedings of the 2001 IEEE International Symposium on Circuits and Systems (ISCAS), vol. II, pp. 305–308 (2001)

    Google Scholar 

  14. Paliouras, V., Skavantzos, A., Stouraitis, T.: Multi-Voltage Low Power Convolvers Using the Polynomial Residue Number System. In: GLSVLSI 2002: Proceedings of the 12th ACM Great Lakes symposium on VLSI, pp. 7–11. ACM, New York (2002)

    Google Scholar 

  15. Paliouras, V., Stouraitis, T.: Novel high-radix Residue Number System architectures. IEEE Transactions on Circuits and Systems – Part II 47(10), 1059–1073 (2001)

    Article  MATH  Google Scholar 

  16. Kouretas, I., Paliouras, V.: High-radix redundant circuits for RNS modulo r n − 1, r n, or r n + 1. In: Proceedings of the 2003 IEEE International Symposium on Circuits and Systems (ISCAS), vol. V, pp. 229–232 (May 2003)

    Google Scholar 

  17. Soderstrand, M.A., Jenkins, W.K., Jullien, G.A., Taylor, F.J.: Residue Number System Arithmetic: Modern Applications in Digital Signal Processing. IEEE Press, Los Alamitos (1986)

    MATH  Google Scholar 

  18. Wallace, C.: A suggestion for a fast multiplier. IEEE Transactions on Electronic Computers EC-13, 14–17 (1964)

    Article  MATH  Google Scholar 

  19. Landman, P.E., Rabaey, J.M.: Activity-Sensitive Architectural Power Analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15(6), 571–587 (1996)

    Article  Google Scholar 

  20. Johansson, K., Gustafsson, O., Wanhammar, L.: Power estimation for ripple-carry adders with correlated input data. In: Macii, E., Paliouras, V., Koufopavlou, O. (eds.) PATMOS 2004. LNCS, vol. 3254, pp. 662–674. Springer, Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kouretas, I., Paliouras, V. (2009). Mixed Radix-2 and High-Radix RNS Bases for Low-Power Multiplication. In: Svensson, L., Monteiro, J. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2008. Lecture Notes in Computer Science, vol 5349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95948-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95948-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95947-2

  • Online ISBN: 978-3-540-95948-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics