[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient variable-coefficient RNS-FIR filters with no restriction on the moduli set

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Introduction of residue number systems (RNS) into hardware realization of high dynamic range FIR filters is known to be advantageous. However, deciding on the number and forms of the moduli, and nature of the filter coefficients is a critical issue, wherein all the previous relevant works lean on RNS multiplication schemes that only work with restricted forms of moduli (e.g., only prime numbers) or only constant FIR coefficients; hence considerably tightening the design space. As a remedy, we propose a modulo-(\({2}^{\mathrm{n}}-\delta \)) multiplier/accumulator scheme (The parameter \(n\) represents the bit-width of the corresponding residue channels wherein the other parameter \(\delta \) determines the exact value of the corresponding modulo) with no restriction on the value of \(\delta \) (except that \(\delta <{2}^{\mathrm{n}-1}\), for balancing the widths of residue channel), nor on the constant/variable nature of the coefficients. The key to this liberty of choice is the especial handling of the end-around carries of modular operations that results in performing only regular non-modular operations, except for the last two that yield the final result. Simulation and synthesis of the proposed circuits show speed, cost and power gains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tan, L., Jiang, J.: Digital signal processing: fundamentals and applications, 2nd edn. Academic Press, Cambridge (2013)

    Google Scholar 

  2. Chueng, L., Womack, G., and Yuen, J.: Camera system for surgical applications. U.S. Patent No. 9,866,742, Issued January 9, (2018)

  3. Wilson, K.: Vehicle and vehicle tire monitoring system, apparatus and method. U.S. Patent No. 10/143,312, Issued March 27, (2003)

  4. Cardarilli, G.C., Nannarelli, A., Re, M.: RNS applications in digital signal processing. In: Embedded Systems Design with Special Arithmetic and Number Systems, pp. 181–215. Springer International Publishing, Berlin (2017)

    Chapter  Google Scholar 

  5. Frery, A.C., Perciano, T.: Image data formats and color representation. In: Introduction to Image Processing Using R, pp. 21–29. SpringerBriefs in Computer Science Springer, London (2013)

    Chapter  Google Scholar 

  6. Conway, R., Nelson, J.: Improved RNS FIR filter architectures. IEEE Trans. Circuits Syst. II: Express Briefs 51(1), 26–28 (2004)

    Article  Google Scholar 

  7. Jenkins, W., Leon, B.: The use of residue number systems in the design of finite impulse response digital filters. IEEE Trans. Circuits Syst. 24(4), 191–201 (1977)

    Article  MathSciNet  Google Scholar 

  8. Kim, D.S., Lee, S.Y., Kil, R.M.: Auditory processing of speech signals for robust speech recognition in real-world noisy environments. IEEE Trans. Speech Audio Process. 7(1), 55–69 (1999)

    Article  Google Scholar 

  9. Chan, D., Rabiner, L.: Analysis of quantization errors in the direct form for finite impulse response digital filters. IEEE Trans. Audio Electroacoust. 21(4), 354–366 (1973)

    Article  Google Scholar 

  10. Garcia, A., Meyer-Base, U., Lloris, A., and Taylor, F. J.: RNS implementation of FIR filters based on distributed arithmetic using field-programmable logic. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, vol. 1, pp. 486–489 (1999)

  11. Yates, R.: Practical considerations in fixed-point FIR filter implementations. Digital Signal Labs, Technical Reference, (2010)

  12. Sanchez, G., Diaz, C., Avalos, J.G., Garcia, L., Vazquez, A., Toscano, K., Sanchez, J.C., Perez, H.: A highly scalable parallel spike-based digital neuromorphic architecture for high-order fir filters using LMS adaptive algorithm. Neurocomputing 330, 425–436 (2019)

    Article  Google Scholar 

  13. Srinivasa Reddy, K., and Sahoo, S. K.: An approach for fixed coefficient RNS-based FIR filter. International Journal of Electronics, pp. 1–19 (2017)

  14. Bernocchi, G. L., Cardarilli, G. C., Del Re, A., Nannarelli, A., and Re, M.: Low-power adaptive filter based on RNS components. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3211–3214 (2007)

  15. Pontarelli, S., Cardarilli, G.C., Re, M., Salsano, A.: Optimized implementation of RNS FIR filters based on FPGAs. J. Signal Process. Syst. 63(3), 201–212 (2012)

    Article  Google Scholar 

  16. Petricca, M., Albicocco, P., Cardarilli, G. C., Nannarelli, A., and Re, M.: Power efficient design of parallel/serial FIR filters in RNS. In Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, pp. 1015–1019 (2012)

  17. Belghadr, A., and Jaberipur, G. L. (2018) FIR filter realization via deferred end-around carry modular addition. Ieee Transactions on Circuits and Systems–I: Regular Papers, 65(9), 2878–2888

  18. Murthy, C.S., Sridevi, K.: FPGA implementation of high speed-low energy RNS based reconfigurable-FIR filter for cognitive radio applications. WSEAS Trans. Syst. Control 16, 278–293 (2021)

    Article  Google Scholar 

  19. Samyuktha, S., Duggineni, C., Swetha, N., Valiveti, H.B.: An optimized area efficient implementation of fir filter using shift add multiplier with carry look ahead adder. Springer Cogn Informatics Soft Comput 1317, 745–754 (2021)

    Article  Google Scholar 

  20. Jyothi, G.N., Sanapala, K., Vijayalakshmi, A.: ASIC implementation of distributed arithmetic based FIR filter using RNS for high speed DSP systems. Int. J. Speech Technol. 23, 259–264 (2020)

    Article  Google Scholar 

  21. Carlo Cardarilli, G., Di Nunzio, L., Fazzolari, R., Nannarelli, A., Petricca. M., and Re, M.: Design space exploration based methodology for residue number system digital filters implementation. IEEE Transactions on Emerging Topics in Computing, (2020)

  22. Del Re, A., Nannarelli, A., Re, M.: A tool for automatic generation of RTL-level VHDL description of RNS FIR filters. Eur Conf. Exhibition Design, Autom. Test 1, 686–687 (2004)

    Google Scholar 

  23. Nannarelli, A., and Re, M.: Residue number systems: a Survey. D T U Compute., Kongens Lyngby, Kgs. Lyngby, Tech. Rep. 2008–04 (2008)

  24. Cardarilli, G. C., Del Re, A., Nannarelli, A., and Re, M.: Impact of RNS coding overhead on FIR filters performance. In Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, pp. 1426–1429 (2007)

  25. Liu, Y., Lai, E.M.K.: Moduli set selection and cost estimation for RNS-based FIR filter and filter bank design. Design Autom. Embed. Syst. 9(2), 123–139 (2004)

    Article  Google Scholar 

  26. Jaberipur, G., Belghadr, A.: (5+2logn)ΔG diminished-1 modulo-(2n+1) unified adder/subtractor with full zero handling. Comput. Electr. Eng. 61, 95–103 (2017)

    Article  Google Scholar 

  27. Jaberipur, G., and Langroudi, S.H.F.: (4 + logn)ΔG parallel prefix modulo-(2n−3) Adder via Double Representation of Residues in [0,2]. IEEE Transactions on Circuits and Systems–II, 62(6), 583–587 (2015)

  28. Langroudi, S. H. F., and Jaberipur, G., Modulo-(2n−2q−1) parallel prefix addition via excess-modulo encoding of residues. In ARITH, Lyon, pp. 121–128 (2015)

  29. Ma, S., Hu, J. H., and Wang, C. H.: A novel modulo-(2n−2k−1) adder for residue number system. IEEE Transactions on Circuits and Systems–I: Regular Papers, 60(11), 2962–2972 (2013)

  30. Hiasat, A.: A modulo (2n−2n-2−1) adder design. Springer Commun. Intell. Syst. 204, 789–802 (2021)

    Google Scholar 

  31. Vergos, H.T., Efstathiou, C.: On the design of efficient modular adders. J. Circuits Syst. Comput. 14(5), 965–972 (2005)

    Article  Google Scholar 

  32. Hiasat, A.A.: A suggestion for a fast residue multiplier for a family of moduli of the form 2n–2p±1. Comput. J. 47(1), 93–102 (2004)

    Article  MathSciNet  Google Scholar 

  33. Li, L., Hu, J., Chen, Y.: An universal architecture for designing modulo 2n–2k−1 multiplier. IEICE Electron. Expr. 9(3), 193–199 (2012)

    Article  Google Scholar 

  34. Hiasat, A.A.: New efficient structure for a modular multiplier for RNS. IEEE Trans. Comput. 49(2), 170–174 (2000)

    Article  MathSciNet  Google Scholar 

  35. Hiasat, A.A.: RNS arithmetic multiplier for medium and large moduli. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(9), 937–940 (2000)

  36. Paliouras, V., Karaginni, K., and T. Stouraitis, T.: A low-complexity combinatorial RNS multiplier. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., 48(7), 675–683 (2001)

  37. Dimitrakopoulos, G., Paliouras, V.: A novel architecture and a systematic graph-based optimization methodology for modulo multiplication. IEEE Trans. Circuits Syst. I Regul. Pap. 51(2), 354–370 (2004)

    Article  MathSciNet  Google Scholar 

  38. Muralidharan, R., Chang, C.H.: Area-power efficient modulo 2n–1 and modulo 2n+1 multipliers for {2n–1, 2n, 2n+ 1} based RNS. IEEE Trans. Circuits Syst. I Regul. Pap. 59(10), 2263–2274 (2012)

    Article  MathSciNet  Google Scholar 

  39. Ahmadifar, A., and Jaberipur, G.: Improved modulo-(2n+3) multipliers. In Proceeding of the 17th CSI International Symposium on Computer Architecture and Digital Systems (CADS2013), Tehran, Iran pp. 31–35 (2013)

  40. Matutino, P. M., Chavez, R., and Sousa, L.: Arithmetic units for RNS moduli {2n−3} and {2n+3} operations. In 13th EUROMICRO Conference on Digital System Design: Architectures, Methods and Tools – DSD, pp. 243–246 (2010)

  41. Liao, Y., Hameenanttila, T. M., and Roberts, D. B.: Processing multiply-accumulate operations in a single cycle. U.S. Patent 6, 611, 856, Issued August 26 (2003)

  42. Wang, Y., Song, X., and Aboulhamid, M.: Adder based residue to binary number converters for (2n−1, 2n, 2n+1). IEEE Transaction on Signal Processing, 50(7), (2002)

  43. Omondi, A., Premkumar, B.: Residue Number Systems: Theory and Implementations. Imperial College Press, London (2007)

    Book  Google Scholar 

Download references

Acknowledgements

This research was supported in part by IPM under Grant CS1400-2-03, and in part by Shahid Beheshti University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Belghadr.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belghadr, A., Jaberipur, G. Efficient variable-coefficient RNS-FIR filters with no restriction on the moduli set. SIViP 16, 1443–1454 (2022). https://doi.org/10.1007/s11760-021-02097-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-021-02097-9

Keywords

Navigation