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Abstract. This paper investigates the performance of a novel set of
Residue Number System (RNS) bases, emphasizing on the minimization
of the power×delay product. The proposed bases introduce moduli of
the form 3n, to the usual choice of moduli of the form 2n, 2n − 1, or
2n +1. It is found that for particular dynamic ranges, the introduction of
high-radix modulo-3n multipliers significantly improves the power×delay
performance of residue multiplication, in comparison to conventional
two’s-complement implementations as well as to RNS architectures using
bases composed of radix-2 moduli. Experimental results demonstrate
reduction of the power×delay product by almost a factor of two, for
some cases.

1 Introduction

The use of alternative number representations such as the Logarithmic Number
System (LNS) and the Residue Number System (RNS), is a promising technique
for the implementation of computationally-intensive special-purpose low-power
systems [1][2].

RNS has been investigated as a possible choice for number representation
in DSP applications [3][4][5], since it offers parallel multiplication or addition
and error-correction properties [6]. Recently RNS has been proved to provide
solutions in the field of wireless communications [7][8].

In RNS architectures, complexity reduction has been sought by resorting to
the use of moduli that lead to simpler circuits. In particular, common choices
are moduli of the form 2n − 1[9], 2n, and 2n + 1 [9][10][11]. Moduli of the form
2n − 1 and 2n + 1 offer low-complexity circuits for arithmetic operations due to
the end-around carry property, while moduli of the form 2n lead to simple and
regular architectures due to the carry-ignore property.

Furthermore, recent works [12][13] have demonstrated the low-power
properties of RNS circuits in comparison to two’s complement-based circuits, for
the implementation of FIR digital filters. A different approach is given in [14],
where it is reported that in case of RNS multiplication, the power supply voltage
can be reduced for those moduli channels, that do not define the critical path of
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the RNS. Thus power can be reduced without affecting the performance of the
overall RNS-based circuit, since only the delay of non-critical moduli channels
increases.

This paper discusses the low-power aspects of architectures that perform
arithmetic modulo 2n−1 or 2n, as well as 3n. The modulo-3n arithmetic circuits
assume a radix-3 implementation [15][16]. The proposed bases comprise two or
three moduli.

The benefits achieved by the proposed RNS-based approach come at the
cost of a conversion overhead. This is common with alternative arithmetics,
as circuits based on them are required to process data, usually available in
a two’s-complement format. It has been reported that since the conversion
overhead cost remains fixed for important classes of applications, such as digital
filtering, a sufficiently large number of multiplications can fully compensate this
cost [12][13].

The remainder of the paper is organized as follows: Section 2 reviews the RNS
basics. In section 3 the proposed RNS bases are presented and the corresponding
performance is compared to a two’s complement multiplier and a RNS multiplier
using a base of radix-2. Finally conclusions are discussed in section 4.

2 Review of RNS Basics

The RNS maps an integer X to a N -tuple of residues xi, as follows

X
RNS−→ {x1, x2, . . . , xN}, (1)

where xi = 〈X〉mi
, 〈·〉mi denotes the mod mi operation, and mi is a member

of a set of pair-wise co-prime integers {m1, m2, . . . , mM}, called base. Co-prime
integers have the property that gcd(mi, mj) = 1, i �= j. The modulo operation
〈X〉m returns the integer remainder of the integer division x div m, i.e., a number
k such that x = m · l + k, where l is an integer. Mapping (1) offers a unique
representation of integer X , when 0 ≤ X <

∏N
i=1 mi.

RNS is of interest because basic arithmetic operations can be performed in
a carry-free manner. In particular the operation Z = X ◦ Y , where Y

RNS−→
{y1, y2, . . . , yN}, Z

RNS−→ {z1, z2, . . . , zN}, and the symbol ◦ stands for addition,
subtraction, or multiplication, can be implemented in RNS as zi = 〈xi ◦ yi〉mi

,
for i = 1, 2, . . . , M . According to the above, each residue result zi does not
depend on any of the xi, yi, j �= i, thus allowing fast data processing in N parallel
independent residue channels. Inverse conversion is accomplished by means of
the Chinese Remainder Theorem (CRT) or mixed-radix conversion [17].

3 Proposed Bases and Low-Power RNS Multiplication

This section proposes RNS bases of the form {2n1, 2n2 − 1, 3n4} and {2n5, 3n6}.
RNS multipliers based on the proposed bases are compared to a two’s
complement (TC) structures as well as to RNS architectures using bases
composed of radix-2 moduli, a common choice in the literature.


