[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Logic on Similarity Based Rough Sets

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11103))

Included in the following conference series:

Abstract

Pawlak’s indiscernibility relation (which is an equivalence relation) represents a limit of our knowledge embedded in an information system. Covering approximation spaces generated by tolerance relations treat objects which are similar to a given object in the same way. Similarity based rough sets rely on the similarity of objects in general and preserve the benefit of pairwise disjoint system of base sets. By using correlation clustering not only a pairwise disjoint system of base sets can be generated but representative members of base sets can be defined. These representative members have an important logical usage. The author shows that there is a logical system relying on similarity base sets in which the truth values of first-order formulas can be counted in an effective simple way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Different versions of partial first–order logic relying on rough sets are e.g. in [9,10,11].

References

  1. Aszalós, L., Mihálydeák, T.: Rough clustering generated by correlation clustering. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, pp. 315–324. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(13), 89–113 (2004). https://doi.org/10.1023/B:MACH.0000033116.57574.95

    Article  MathSciNet  MATH  Google Scholar 

  3. Becker, H.: A survey of correlation clustering. In: Advanced Topics in Computational Learning Theory, pp. 1–10 (2005)

    Google Scholar 

  4. Ciucci, D., Mihálydeák, T., Csajbók, Z.E.: On definability and approximations in partial approximation spaces. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS (LNAI), vol. 8818, pp. 15–26. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11740-9_2

    Chapter  MATH  Google Scholar 

  5. Csajbók, Z., Mihálydeák, T.: A general set theoretic approximation framework. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds.) Advances on Computational Intelligence, pp. 604–612. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31709-5_61

    Chapter  Google Scholar 

  6. Csajbók, Z.E., Mihálydeák, T.: From vagueness to rough sets in partial approximation spaces. In: Kryszkiewicz, M., Cornelis, C., Ciucci, D., Medina-Moreno, J., Motoda, H., Raś, Z.W. (eds.) Rough Sets and Intelligent Systems Paradigms, pp. 42–52. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08729-0_4

    Chapter  Google Scholar 

  7. Golińska-Pilarek, J., Orłowska, E.: Logics of similarity and their dual tableaux a survey. In: Della Riccia, G., Dubois, D., Kruse, R., Lenz, H.J. (eds.) Preferences and Similarities, pp. 129–159. Springer, Vienna (2008). https://doi.org/10.1007/978-3-211-85432-7_5

  8. Mani, A.: Choice inclusive general rough semantics. Inf. Sci. 181(6), 1097–1115 (2011)

    Article  MathSciNet  Google Scholar 

  9. Mihálydeák, T.: Partial first-order logic with approximative functors based on properties. In: Li, T., Nguyen, H.S., Wang, G., Grzymala-Busse, J., Janicki, R., Hassanien, A.E., Yu, H. (eds.) Rough Sets and Knowledge Technology, pp. 514–523. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31900-6_63

    Chapter  Google Scholar 

  10. Mihálydeák, T.: Aristotle’s Syllogisms in Logical Semantics Relying on Optimistic, Average and Pessimistic Membership Functions. In: Cornelis, C., Kryszkiewicz, M., Ślȩzak, D., Ruiz, E.M., Bello, R., Shang, L. (eds.) RSCTC 2014. LNCS (LNAI), vol. 8536, pp. 59–70. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08644-6_6

    Chapter  Google Scholar 

  11. Mihálydeák, T.: First-order logic based on set approximation: a partial three-valued approach. In: 2014 IEEE 44th International Symposium on Multiple-Valued Logic, pp. 132–137, May 2014. https://doi.org/10.1109/ISMVL.2014.31

  12. Nagy, D., Mihálydeák, T., Aszalós, L.: Similarity based rough sets. In: Polkowski, L., et al. (eds.) Rough Sets, pp. 94–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60840-2_7

    Chapter  Google Scholar 

  13. Pawlak, Z.: Rough sets. Int. J. Parallel Programm. 11(5), 341–356 (1982)

    MATH  Google Scholar 

  14. Pawlak, Z., Skowron, A.: Rough sets and Boolean reasoning. Inf. Sci. 177(1), 41–73 (2007)

    Article  MathSciNet  Google Scholar 

  15. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MathSciNet  Google Scholar 

  16. Pawlak, Z., et al.: Rough Sets: Theoretical Aspects of Reasoning About Data. System Theory, Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  17. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2), 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Vakarelov, Dimiter: A modal characterization of indiscernibility and similarity relations in Pawlak’s information systems. In: Ślęzak, D., et al. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 12–22. Springer, Heidelberg (2005). https://doi.org/10.1007/11548669_2

    Chapter  Google Scholar 

  19. Yao, J., Yao, Y., Ziarko, W.: Probabilistic rough sets: approximations, decision-makings, and applications. Int. J. Approx. Reason. 49(2), 253–254 (2008)

    Article  Google Scholar 

  20. Yao, Y., Yao, B.: Covering based rough set approximations. Inf. Sci. 200, 91–107 (2012). https://doi.org/10.1016/j.ins.2012.02.065. http://www.sciencedirect.com/science/article/pii/S0020025512001934

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the construction EFOP–3.6.3–VEKOP–16–2017–00002. The project has been supported by the European Union, co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Mihálydeák .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mihálydeák, T. (2018). Logic on Similarity Based Rough Sets. In: Nguyen, H., Ha, QT., Li, T., Przybyła-Kasperek, M. (eds) Rough Sets. IJCRS 2018. Lecture Notes in Computer Science(), vol 11103. Springer, Cham. https://doi.org/10.1007/978-3-319-99368-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99368-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99367-6

  • Online ISBN: 978-3-319-99368-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics