Abstract
To approximate sets a number of theories have been appeared for the last decades. Starting up from some general theoretical pre-conditions we give a set of minimum requirements against as the lower and upper approximations. We provide a characterization of them within the proposed general set theoretic approximation framework finding out their compound nature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banerjee, M., Chakraborty, M.: Algebras from rough sets. In: Pal, S., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words, pp. 157–184. Springer, Berlin (2004)
Bonikowski, Z., Bryniarski, E., Wybraniec-Skardowska, U.: Extensions and intensions in the ruogh set theory. Information Sciences 107(1-4), 149–167 (1998)
Cattaneo, G.: Abstract approximation spaces for rough theories. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery 1: Methodology and Applications. STUDFUZZ, pp. 59–98. Physica-Verlag, Heidelberg (1997)
Ciucci, D.: A Unifying Abstract Approach for Rough Models. In: Wang, G., Li, T., Grzymala-Busse, J.W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 371–378. Springer, Heidelberg (2008)
Ciucci, D.: Approximation algebra and framework. Fundamenta Informaticae 94, 147–161 (2009)
Csajbók, Z.: Partial approximative set theory: A generalization of the rough set theory. In: Martin, T., Muda, A.K., Abraham, A., Prade, H., Laurent, A., Laurent, D., Sans, V. (eds.) Proceedings of SoCPaR 2010, Cergy Pontoise / Paris, France, December 7-10, pp. 51–56. IEEE (2010)
Csajbók, Z., Mihálydeák, T.: On the general set theoretical framework of set approximation. In: Proceedings of RST 2011, Milan, Italy, September 14-16, pp. 12–15 (2011)
Csajbók, Z., Mihálydeák, T.: Partial approximative set theory: A generalization of the rough set theory. International Journal of Computer Information Systems and Industrial Management Applications 4, 437–444 (2012)
Csajbók, Z.: Approximation of sets based on partial covering. Theoretical Computer Science 412(42), 5820–5833 (2011)
Düntsch, I., Gediga, G.: Approximation Operators in Qualitative Data Analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2003. LNCS, vol. 2929, pp. 214–230. Springer, Heidelberg (2003)
Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation by dominance relations. International Journal of Intelligent Systems 17, 153–171 (2002)
Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria decision analysis. European Journal of Operational Research 129, 1–47 (2001)
Inuiguchi, M.: Generalizations of Rough Sets and Rule Extraction. In: Peters, J.F., Skowron, A., Grzymała-Busse, J.W., Kostek, B.z., Świniarski, R.W., Szczuka, M.S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 96–119. Springer, Heidelberg (2004)
Inuiguchi, M., Tanino, T.: Generalized Rough Sets and Rule Extraction. In: Alpigini, J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 105–112. Springer, Heidelberg (2002)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341–356 (1982)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177, 28–40 (2007)
Polkowski, L.: Rough Sets: Mathematical Foundations. AISC. Physica-Verlag, A Springer-Verlag Company (2002)
Skowron, A., Stepaniuk, J., Swiniarski, R.: Approximation spaces in rough-granular computing. Fundamenta Informaticae 100(1–4), 141–157 (2010)
Skowron, A., Świniarski, R.W., Synak, P.: Approximation Spaces and Information Granulation. In: Peters, J.F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 175–189. Springer, Heidelberg (2005)
Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Transactions on Knowledge and Data Engineering 12, 331–336 (2000)
Stepaniuk, J.: Rough–Granular Computing in Knowledge Discovery and Data Mining. SCI. Springer, Heidelberg (2008)
Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximation Reasoning 15(4), 291–317 (1996)
Yao, Y.Y.: Constructive and algebraic methods of the theory of rough sets. Information Sciences 109(1–4), 21–47 (1998)
Yao, Y.Y.: On Generalizing Pawlak Approximation Operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298–307. Springer, Heidelberg (1998)
Yao, Y.Y.: On Generalizing Rough Set Theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 44–51. Springer, Heidelberg (2003)
Zhu, W.: Topological approaches to covering rough sets. Information Sciences 177(6), 1499–1508 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Csajbók, Z., Mihálydeák, T. (2012). A General Set Theoretic Approximation Framework. In: Greco, S., Bouchon-Meunier, B., Coletti, G., Fedrizzi, M., Matarazzo, B., Yager, R.R. (eds) Advances on Computational Intelligence. IPMU 2012. Communications in Computer and Information Science, vol 297. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31709-5_61
Download citation
DOI: https://doi.org/10.1007/978-3-642-31709-5_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-31708-8
Online ISBN: 978-3-642-31709-5
eBook Packages: Computer ScienceComputer Science (R0)