Abstract
Pawlak’s indiscernibility relation (which is an equivalence relation) represents a limit of our knowledge embedded in an information system. In many cases covering approximation spaces rely on tolerance relations instead of equivalence relations. In real practice (for example in data mining) tolerance relations may be generated from the properties of objects. A given tolerance relation represents similarity between objects, but the usage of similarity is very special: it emphasizes the similarity to a given object and not the similarity of objects ‘in general’. The authors show that this usage has some problematic consequences. The main goal of the paper is to show that if one uses the method of correlation clustering then there is a way to construct a general (partial) approximation space with disjoint base sets relying on the similarity of objects generated by their properties. At the end a software describing a real life problem is presented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aigner, M.: Enumeration via ballot numbers. Discret. Math. 308(12), 2544–2563 (2008). http://www.sciencedirect.com/science/article/pii/S0012365X07004542
Aszalós, L., Mihálydeák, T.: Rough clustering generated by correlation clustering. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS, vol. 8170, pp. 315–324. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41218-9_34. http://dx.doi.org/10.1109/TKDE.2007.1061
Aszalós, L., Mihálydeák, T.: Rough classification based on correlation clustering. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 399–410. Springer, Cham (2014). doi:10.1007/978-3-319-11740-9_37
Aszalós, L., Mihálydeák, T.: Correlation clustering by contraction. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 425–434. IEEE (2015)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)
Becker, H.: A survey of correlation clustering. In: Advanced Topics in Computational Learning Theory, pp. 1–10 (2005)
Ciucci, D., Mihálydeák, T., Csajbók, Z.E.: On definability and approximations in partial approximation spaces. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 15–26. Springer, Cham (2014). doi:10.1007/978-3-319-11740-9_2
Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988). http://dx.doi.org/10.1023/A:1022602019183
Kádek, T., Kósa, M., Pánovics, J.: Experiences of programming competitions supported by the ProgCont system (in Hungarian). In: New Technologies in Science, Research and Education, pp. 152–157 (2012)
Mani, A.: Choice inclusive general rough semantics. Inf. Sci. 181(6), 1097–1115 (2011)
Néda, Z., Sumi, R., Ercsey-Ravasz, M., Varga, M., Molnár, B., Cseh, G.: Correlation clustering on networks. J. Phys. A: Math. Theor. 42(34), 345003 (2009). http://www.journalogy.net/Publication/18892707/correlation-clustering-on-networks
Pawlak, Z.: Rough sets. Int. J. Parallel Prog. 11(5), 341–356 (1982)
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)
Pawlak, Z., et al.: Rough Sets: Theoretical Aspects of Reasoning About Data. System Theory Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2), 245–253 (1996)
Yao, Y., Yao, B.: Covering based rough set approximations. Inf. Sci. 200, 91–107 (2012). http://www.sciencedirect.com/science/article/pii/S0020025512001934
Zimek, A.: Correlation clustering. ACM SIGKDD Explor. Newsl. 11(1), 53–54 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nagy, D., Mihálydeák, T., Aszalós, L. (2017). Similarity Based Rough Sets. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10314. Springer, Cham. https://doi.org/10.1007/978-3-319-60840-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-60840-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60839-6
Online ISBN: 978-3-319-60840-2
eBook Packages: Computer ScienceComputer Science (R0)