[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Similarity Based Rough Sets

  • Conference paper
  • First Online:
Rough Sets (IJCRS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10314))

Included in the following conference series:

Abstract

Pawlak’s indiscernibility relation (which is an equivalence relation) represents a limit of our knowledge embedded in an information system. In many cases covering approximation spaces rely on tolerance relations instead of equivalence relations. In real practice (for example in data mining) tolerance relations may be generated from the properties of objects. A given tolerance relation represents similarity between objects, but the usage of similarity is very special: it emphasizes the similarity to a given object and not the similarity of objects ‘in general’. The authors show that this usage has some problematic consequences. The main goal of the paper is to show that if one uses the method of correlation clustering then there is a way to construct a general (partial) approximation space with disjoint base sets relying on the similarity of objects generated by their properties. At the end a software describing a real life problem is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aigner, M.: Enumeration via ballot numbers. Discret. Math. 308(12), 2544–2563 (2008). http://www.sciencedirect.com/science/article/pii/S0012365X07004542

    Article  MathSciNet  MATH  Google Scholar 

  2. Aszalós, L., Mihálydeák, T.: Rough clustering generated by correlation clustering. In: Ciucci, D., Inuiguchi, M., Yao, Y., Ślęzak, D., Wang, G. (eds.) RSFDGrC 2013. LNCS, vol. 8170, pp. 315–324. Springer, Heidelberg (2013). doi:10.1007/978-3-642-41218-9_34. http://dx.doi.org/10.1109/TKDE.2007.1061

    Chapter  Google Scholar 

  3. Aszalós, L., Mihálydeák, T.: Rough classification based on correlation clustering. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 399–410. Springer, Cham (2014). doi:10.1007/978-3-319-11740-9_37

    Google Scholar 

  4. Aszalós, L., Mihálydeák, T.: Correlation clustering by contraction. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 425–434. IEEE (2015)

    Google Scholar 

  5. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56(1–3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Becker, H.: A survey of correlation clustering. In: Advanced Topics in Computational Learning Theory, pp. 1–10 (2005)

    Google Scholar 

  7. Ciucci, D., Mihálydeák, T., Csajbók, Z.E.: On definability and approximations in partial approximation spaces. In: Miao, D., Pedrycz, W., Ślȩzak, D., Peters, G., Hu, Q., Wang, R. (eds.) RSKT 2014. LNCS, vol. 8818, pp. 15–26. Springer, Cham (2014). doi:10.1007/978-3-319-11740-9_2

    Google Scholar 

  8. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988). http://dx.doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  9. Kádek, T., Kósa, M., Pánovics, J.: Experiences of programming competitions supported by the ProgCont system (in Hungarian). In: New Technologies in Science, Research and Education, pp. 152–157 (2012)

    Google Scholar 

  10. Mani, A.: Choice inclusive general rough semantics. Inf. Sci. 181(6), 1097–1115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Néda, Z., Sumi, R., Ercsey-Ravasz, M., Varga, M., Molnár, B., Cseh, G.: Correlation clustering on networks. J. Phys. A: Math. Theor. 42(34), 345003 (2009). http://www.journalogy.net/Publication/18892707/correlation-clustering-on-networks

    Article  MathSciNet  MATH  Google Scholar 

  12. Pawlak, Z.: Rough sets. Int. J. Parallel Prog. 11(5), 341–356 (1982)

    MATH  Google Scholar 

  13. Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pawlak, Z., et al.: Rough Sets: Theoretical Aspects of Reasoning About Data. System Theory Knowledge Engineering and Problem Solving, vol. 9. Kluwer Academic Publishers, Dordrecht (1991)

    Book  MATH  Google Scholar 

  15. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2), 245–253 (1996)

    MathSciNet  MATH  Google Scholar 

  16. Yao, Y., Yao, B.: Covering based rough set approximations. Inf. Sci. 200, 91–107 (2012). http://www.sciencedirect.com/science/article/pii/S0020025512001934

    Article  MathSciNet  MATH  Google Scholar 

  17. Zimek, A.: Correlation clustering. ACM SIGKDD Explor. Newsl. 11(1), 53–54 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dávid Nagy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nagy, D., Mihálydeák, T., Aszalós, L. (2017). Similarity Based Rough Sets. In: Polkowski, L., et al. Rough Sets. IJCRS 2017. Lecture Notes in Computer Science(), vol 10314. Springer, Cham. https://doi.org/10.1007/978-3-319-60840-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60840-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60839-6

  • Online ISBN: 978-3-319-60840-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics