[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Efficient Neural Generation of 4K Masks for Homogeneous Diffusion Inpainting

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

Abstract

With well-selected data, homogeneous diffusion inpainting can reconstruct images from sparse data with high quality. While 4K colour images of size \(3840\, \times \,2160\) can already be inpainted in real time, optimising the known data for applications like image compression remains challenging: Widely used stochastic strategies can take days for a single 4K image. Recently, a first neural approach for this so-called mask optimisation problem offered high speed and good quality for small images. It trains a mask generation network with the help of a neural inpainting surrogate. However, these mask networks can only output masks for the resolution and mask density they were trained for. We solve these problems and enable mask optimisation for high-resolution images through a neuroexplicit coarse-to-fine strategy. Additionally, we improve the training and interpretability of mask networks by including a numerical inpainting solver directly into the network. This allows to generate masks for 4K images in around 0.6 s while exceeding the quality of stochastic methods on practically relevant densities. Compared to popular existing approaches, this is an acceleration of up to four orders of magnitude.

This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 741215, ERC Advanced Grant INCOVID).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: Proceedings of the 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, vol. 1, pp. 1122–1131 (2017)

    Google Scholar 

  2. Alt, T., Peter, P., Weickert, J.: Learning sparse masks for diffusion-based image inpainting. In: Pinho, A.J., Georgieva, P., Teixeira, L.F., Sánchez, J.A. (eds.) IbPRIA 2022. LNCS, vol. 13256, pp. 528–539. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-04881-4_42

    Chapter  Google Scholar 

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  4. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonettini, S., Loris, I., Porta, F., Prato, M., Rebegoldi, S.: On the convergence of a linesearch based proximal-gradient method for nonconvex optimization. Inverse Prob. 33(5), 055005 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlsson, S.: Sketch based coding of grey level images. Signal Process. 15, 57–83 (1988)

    Article  Google Scholar 

  7. Chizhov, V., Weickert, J.: Efficient data optimisation for harmonic inpainting with finite elements. In: Tsapatsoulis, N., Panayides, A., Theocharides, T., Lanitis, A., Pattichis, C., Vento, M. (eds.) CAIP 2021. LNCS, vol. 13053, pp. 432–441. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89131-2_40

    Chapter  Google Scholar 

  8. Dai, Q., Chopp, H., Pouyet, E., Cossairt, O., Walton, M., Katsaggelos, A.K.: Adaptive image sampling using deep learning and its application on X-ray fluorescence image reconstruction. IEEE Trans. Multimedia 22(10), 2564–2578 (2019)

    Article  Google Scholar 

  9. Daropoulos, V., Augustin, M., Weickert, J.: Sparse inpainting with smoothed particle hydrodynamics. SIAM J. Appl. Math. 14(4), 1669–1704 (2021)

    MathSciNet  MATH  Google Scholar 

  10. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Miami, pp. 248–255 (2009)

    Google Scholar 

  11. Floyd, R.W., Steinberg, L.: An adaptive algorithm for spatial grey scale. In: Proceedings of the Society of Information Display, vol. 17, pp. 75–77 (1976)

    Google Scholar 

  12. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. J. Math. Imaging Vis. 31(2–3), 255–269 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guillemot, C., Le Meur, O.: Image inpainting: overview and recent advances. IEEE Signal Process. Mag. 31(1), 127–144 (2014)

    Article  Google Scholar 

  14. Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for Laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.C. (eds.) Energy Minimisation Methods in Computer Vision and Pattern Recognition. Lecture Notes in Computer Science, vol. 8081, pp. 151–164. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40395-8_12

    Chapter  Google Scholar 

  15. Kämper, N., Weickert, J.: Domain decomposition algorithms for real-time homogeneous diffusion inpainting in 4K. In: Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, pp. 1680–1684 (2022)

    Google Scholar 

  16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations, San Diego (2015)

    Google Scholar 

  17. Mainberger, M., et al.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., ter Haar Romeny, B., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24785-9_3

    Chapter  Google Scholar 

  18. Ochs, P., Chen, Y., Brox, T., Pock, T.: iPiano: inertial proximal algorithm for nonconvex optimization. SIAM J. Imag. Sci. 7(2), 1388–1419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pennebaker, W.B., Mitchell, J.L.: JPEG: Still Image Data Compression Standard. Springer, New York (1992)

    Google Scholar 

  20. Peter, P.: A Wasserstein GAN for joint learning of inpainting and its spatial optimisation. arXiv:2202.05623 [eess.IV] (2022)

  21. Peter, P., Schrader, K., Alt, T., Weickert, J.: Deep spatial and tonal data optimisation for homogeneous diffusion inpainting. arXiv:2208.14371 [eess.IV] (2022)

  22. Vašata, D., Halama, T., Friedjungová, M.: Image inpainting using Wasserstein generative adversarial imputation network. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12892, pp. 575–586. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86340-1_46

    Chapter  Google Scholar 

  23. Weickert, J., Welk, M.: Tensor field interpolation with PDEs. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 315–325. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-31272-2_19

    Chapter  Google Scholar 

  24. Wendland, H.: Numerical Linear Algebra: An Introduction. Cambridge University Press, Cambridge (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Schrader .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 50325 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schrader, K., Peter, P., Kämper, N., Weickert, J. (2023). Efficient Neural Generation of 4K Masks for Homogeneous Diffusion Inpainting. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics