[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Optimal Control Approach to Find Sparse Data for Laplace Interpolation

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013)

Abstract

Finding optimal data for inpainting is a key problem in the context of partial differential equation-based image compression. We present a new model for optimising the data used for the reconstruction by the underlying homogeneous diffusion process. Our approach is based on an optimal control framework with a strictly convex cost functional containing an L 1 term to enforce sparsity of the data and non-convex constraints. We propose a numerical approach that solves a series of convex optimisation problems with linear constraints. Our numerical examples show that it outperforms existing methods with respect to quality and computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM Journal on Applied Mathematics 70(1), 333–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Company (2000)

    Google Scholar 

  3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer (2000)

    Google Scholar 

  4. Buckheit, J., Chen, S.S., Donoho, D., Huo, X., Johnstone, I., Levi, O., Scargle, J., Yu, T.: WAVELAB 850 toolbox for matlab (2012), http://www-stat.stanford.edu/~wavelab/Wavelab_850/download.html

  5. Chambolle, A., Pock, T.: A first order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM (1990)

    Google Scholar 

  7. Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive banach spaces. ESAIM: Control, Optimisation and Calculus of Variations 17(1), 243–266 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangulations. Signal Processing 86(7), 1604–1616 (2006)

    Article  MATH  Google Scholar 

  9. Demaret, L., Iske, A.: Advances in digital image compression by adaptive thinning. Annals of the MCFA 3, 105–109 (2004)

    Google Scholar 

  10. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences 3(4), 1015–1046 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friedlander, M.P., Saunders, M.A.: A globally convergent linearly constrained lagrangian method for nonlinear optimization. SIAM Journal on Optimization 15(3), 863–897 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision 31(2-3), 255–269 (2008)

    Article  MathSciNet  Google Scholar 

  13. Griffith, R.E., Stewart, R.A.: A nonlinear programming technique for the optimization of continuous processing systems. Management Science 7(4), 379–392 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  14. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM (1987)

    Google Scholar 

  15. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Computation 19(10), 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based image compression of cartoon-like images with homogeneous diffusion. Pattern Recognition 44(9), 1859–1873 (2011)

    Article  Google Scholar 

  17. Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. of the International Conference on Image Processing, vol. 3, pp. 259–263. IEEE (1998)

    Google Scholar 

  19. Murthagh, B.A., Saunders, M.A.: A projected lagrangian algorithm and its implementation for sparse nonlinear constraints. Mathematical Programming Study 16, 84–117 (1982)

    Article  Google Scholar 

  20. Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Robinson, S.M.: A quadratically-convergent algorithm for general nonlinear programming problems. Mathematical Programming 3, 145–156 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schmaltz, C., Weickert, J., Bruhn, A.: Beating the quality of JPEG 2000 with anisotropic diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 452–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer (1992)

    Google Scholar 

  24. Stadler, G.: Elliptic optimal control problems with L 1-control cost and applications for the placement of control devices. Computational Optimization and Applications 44(2), 159–181 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tröltzsch, F.: Optimale Steuerung Partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen, 2nd edn. Vieweg+Teubner (2009)

    Google Scholar 

  26. Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: Control, Optimisation and Calculus of Variations 17(3), 858–886 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Xu, Y., Yin, W.: A block coordinate descent method for multi-convex optimization with applications to nonnegative tensor factorization and completion. Rice CAAM Technical Report TR12-15, Rice University (2012)

    Google Scholar 

  28. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Frontiers of Mathematics in China 7(2), 365–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoeltgen, L., Setzer, S., Weickert, J. (2013). An Optimal Control Approach to Find Sparse Data for Laplace Interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40395-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40394-1

  • Online ISBN: 978-3-642-40395-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics