Abstract
Finding optimal data for inpainting is a key problem in the context of partial differential equation-based image compression. We present a new model for optimising the data used for the reconstruction by the underlying homogeneous diffusion process. Our approach is based on an optimal control framework with a strictly convex cost functional containing an L 1 term to enforce sparsity of the data and non-convex constraints. We propose a numerical approach that solves a series of convex optimisation problems with linear constraints. Our numerical examples show that it outperforms existing methods with respect to quality and computation time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM Journal on Applied Mathematics 70(1), 333–352 (2009)
Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proc. 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Company (2000)
Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer Series in Operations Research. Springer (2000)
Buckheit, J., Chen, S.S., Donoho, D., Huo, X., Johnstone, I., Levi, O., Scargle, J., Yu, T.: WAVELAB 850 toolbox for matlab (2012), http://www-stat.stanford.edu/~wavelab/Wavelab_850/download.html
Chambolle, A., Pock, T.: A first order primal-dual algorithm for convex problems with applications to imaging. Journal of Mathematical Imaging and Vision 40(1), 120–145 (2011)
Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM (1990)
Clason, C., Kunisch, K.: A duality-based approach to elliptic control problems in non-reflexive banach spaces. ESAIM: Control, Optimisation and Calculus of Variations 17(1), 243–266 (2011)
Demaret, L., Dyn, N., Iske, A.: Image compression by linear splines over adaptive triangulations. Signal Processing 86(7), 1604–1616 (2006)
Demaret, L., Iske, A.: Advances in digital image compression by adaptive thinning. Annals of the MCFA 3, 105–109 (2004)
Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM Journal on Imaging Sciences 3(4), 1015–1046 (2010)
Friedlander, M.P., Saunders, M.A.: A globally convergent linearly constrained lagrangian method for nonlinear optimization. SIAM Journal on Optimization 15(3), 863–897 (2005)
Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.P.: Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision 31(2-3), 255–269 (2008)
Griffith, R.E., Stewart, R.A.: A nonlinear programming technique for the optimization of continuous processing systems. Management Science 7(4), 379–392 (1961)
Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM (1987)
Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Computation 19(10), 2756–2779 (2007)
Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based image compression of cartoon-like images with homogeneous diffusion. Pattern Recognition 44(9), 1859–1873 (2011)
Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012)
Masnou, S., Morel, J.M.: Level lines based disocclusion. In: Proc. of the International Conference on Image Processing, vol. 3, pp. 259–263. IEEE (1998)
Murthagh, B.A., Saunders, M.A.: A projected lagrangian algorithm and its implementation for sparse nonlinear constraints. Mathematical Programming Study 16, 84–117 (1982)
Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008)
Robinson, S.M.: A quadratically-convergent algorithm for general nonlinear programming problems. Mathematical Programming 3, 145–156 (1972)
Schmaltz, C., Weickert, J., Bruhn, A.: Beating the quality of JPEG 2000 with anisotropic diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 452–461. Springer, Heidelberg (2009)
Sokolowski, J., Zolesio, J.P.: Introduction to Shape Optimization. Springer (1992)
Stadler, G.: Elliptic optimal control problems with L 1-control cost and applications for the placement of control devices. Computational Optimization and Applications 44(2), 159–181 (2009)
Tröltzsch, F.: Optimale Steuerung Partieller Differentialgleichungen: Theorie, Verfahren und Anwendungen, 2nd edn. Vieweg+Teubner (2009)
Wachsmuth, G., Wachsmuth, D.: Convergence and regularization results for optimal control problems with sparsity functional. ESAIM: Control, Optimisation and Calculus of Variations 17(3), 858–886 (2011)
Xu, Y., Yin, W.: A block coordinate descent method for multi-convex optimization with applications to nonnegative tensor factorization and completion. Rice CAAM Technical Report TR12-15, Rice University (2012)
Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Frontiers of Mathematics in China 7(2), 365–384 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hoeltgen, L., Setzer, S., Weickert, J. (2013). An Optimal Control Approach to Find Sparse Data for Laplace Interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-40395-8_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40394-1
Online ISBN: 978-3-642-40395-8
eBook Packages: Computer ScienceComputer Science (R0)