[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2872 Accesses

  • 60 Citations

Abstract

We present a unified framework for interpolation and regularisation of scalar- and tensor-valued images. This framework is based on elliptic partial differential equations (PDEs) and allows rotationally invariant models. Since it does not require a regular grid, it can also be used for tensor-valued scattered data interpolation and for tensor field inpainting. By choosing suitable differential operators, interpolation methods using radial basis functions are covered. Our experiments show that a novel interpolation technique based on anisotropic diffusion with a diffusion tensor should be favoured: It outperforms interpolants with radial basis functions, it allows discontinuity-preserving interpolation with no additional oscillations, and it respects positive semidefiniteness of the input tensor data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. A. Aldroubi and P. Basser. Reconstruction of vector and tensor fields from sampled discrete data. In D. Larson and L. Baggett, editors, The Functional and Harmonic Analysis of Wavelets, volume 247 of Contemporary Mathematics, pp. 1–15. AMS, Providence, 1999.

    Google Scholar 

  2. T. Brox, J. Weickert, B. Burgeth, and P. Mrázek. Nonlinear structure tensors. Technical Report 113, Dept. of Mathematics, Saarland University, Saarbrücken, Germany, October 2004.

    Google Scholar 

  3. M. D. Buhmann. Radial Basis Functions. Cambridge University Press, Cambridge, UK, 2003.

    Book  MATH  Google Scholar 

  4. V. Caselles, J.-M. Morel, and C. Sbert. An axiomatic approach to image interpolation. IEEE Transactions on Image Processing, 7(3):376–386, March 1998.

    Article  MathSciNet  MATH  Google Scholar 

  5. T. F. Chan and J. Shen. Non-texture inpainting by curvature-driven diffusions (CDD). Journal of Visual Communication and Image Representation, 12(4):436–449, 2001.

    Article  Google Scholar 

  6. P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Two deterministic half-quadratic regularization algorithms for computed imaging. In Proc. 1994 IEEE International Conference on Image Processing, volume 2, pp. 168–172, Austin, TX, November 1994. IEEE Computer Society Press.

    Article  Google Scholar 

  7. R. Franke. Scattered data interpolation: Tests of some methods. Mathematics of Computation, 38:181–200, 1982.

    MathSciNet  MATH  Google Scholar 

  8. I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P. Seidel. Towards PDE-based image compression. Manuscript, June 2005. Submitted.

    Google Scholar 

  9. H. Grossauer and O. Scherzer. Using the complex Ginzburg-Landau equation for digital impainting in 2D and 3D. In L. D. Griffin and M. Lillholm, editors, Scale-Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science, pp. 225–236, Berlin, 2003. Springer.

    Google Scholar 

  10. T. Lehmann, C. Gönner, and K. Spitzer. Survey: Interpolation methods in medical image processing. IEEE Transactions on Medical Imaging, 18(11):1049–1075, November 1999.

    Article  Google Scholar 

  11. F. Malgouyres and F. Guichard. Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal on Numerical Analysis, 39(1):1–37, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Masnou and J.-M. Morel. Level lines based disocclusion. In Proc. 1998 IEEE International Conference on Image Processing, volume 3, pp. 259–263, Chicago, IL, October 1998.

    Google Scholar 

  13. E. Meijering. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE, 90(3):319–342, March 2002.

    Article  Google Scholar 

  14. G. M. Nielson and J. Tvedt. Comparing methods of interpolation for scattered volumetric data. In D. F. Rogers and R. A. Earnshaw, editors, State of the Art in Computer Graphics: Aspects of Visualization, pp. 67–86. Springer, New York, 1994.

    Google Scholar 

  15. L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992.

    Article  MATH  Google Scholar 

  16. D. Tschumperlé and R. Deriche. Orthonormal vector sets regularization with PDE’s and applications. International Journal of Computer Vision, 50(3):237–252, December 2002.

    Article  MATH  Google Scholar 

  17. J. Weickert. Anisotropic Diffusion in Image Processing. Teubner, Stuttgart, 1998.

    MATH  Google Scholar 

  18. J. Weickert and T. Brox. Diffusion and regularization of vector-and matrix-valued images. In M. Z. Nashed and O. Scherzer, editors, Inverse Problems, Image Analysis, and Medical Imaging, volume 313 of Contemporary Mathematics, pp. 251–268. AMS, Providence, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weickert, J., Welk, M. (2006). Tensor Field Interpolation with PDEs. In: Weickert, J., Hagen, H. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31272-2_19

Download citation

Publish with us

Policies and ethics