Abstract
We present a unified framework for interpolation and regularisation of scalar- and tensor-valued images. This framework is based on elliptic partial differential equations (PDEs) and allows rotationally invariant models. Since it does not require a regular grid, it can also be used for tensor-valued scattered data interpolation and for tensor field inpainting. By choosing suitable differential operators, interpolation methods using radial basis functions are covered. Our experiments show that a novel interpolation technique based on anisotropic diffusion with a diffusion tensor should be favoured: It outperforms interpolants with radial basis functions, it allows discontinuity-preserving interpolation with no additional oscillations, and it respects positive semidefiniteness of the input tensor data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. Aldroubi and P. Basser. Reconstruction of vector and tensor fields from sampled discrete data. In D. Larson and L. Baggett, editors, The Functional and Harmonic Analysis of Wavelets, volume 247 of Contemporary Mathematics, pp. 1–15. AMS, Providence, 1999.
T. Brox, J. Weickert, B. Burgeth, and P. Mrázek. Nonlinear structure tensors. Technical Report 113, Dept. of Mathematics, Saarland University, Saarbrücken, Germany, October 2004.
M. D. Buhmann. Radial Basis Functions. Cambridge University Press, Cambridge, UK, 2003.
V. Caselles, J.-M. Morel, and C. Sbert. An axiomatic approach to image interpolation. IEEE Transactions on Image Processing, 7(3):376–386, March 1998.
T. F. Chan and J. Shen. Non-texture inpainting by curvature-driven diffusions (CDD). Journal of Visual Communication and Image Representation, 12(4):436–449, 2001.
P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud. Two deterministic half-quadratic regularization algorithms for computed imaging. In Proc. 1994 IEEE International Conference on Image Processing, volume 2, pp. 168–172, Austin, TX, November 1994. IEEE Computer Society Press.
R. Franke. Scattered data interpolation: Tests of some methods. Mathematics of Computation, 38:181–200, 1982.
I. Galić, J. Weickert, M. Welk, A. Bruhn, A. Belyaev, and H.-P. Seidel. Towards PDE-based image compression. Manuscript, June 2005. Submitted.
H. Grossauer and O. Scherzer. Using the complex Ginzburg-Landau equation for digital impainting in 2D and 3D. In L. D. Griffin and M. Lillholm, editors, Scale-Space Methods in Computer Vision, volume 2695 of Lecture Notes in Computer Science, pp. 225–236, Berlin, 2003. Springer.
T. Lehmann, C. Gönner, and K. Spitzer. Survey: Interpolation methods in medical image processing. IEEE Transactions on Medical Imaging, 18(11):1049–1075, November 1999.
F. Malgouyres and F. Guichard. Edge direction preserving image zooming: A mathematical and numerical analysis. SIAM Journal on Numerical Analysis, 39(1):1–37, 2001.
S. Masnou and J.-M. Morel. Level lines based disocclusion. In Proc. 1998 IEEE International Conference on Image Processing, volume 3, pp. 259–263, Chicago, IL, October 1998.
E. Meijering. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE, 90(3):319–342, March 2002.
G. M. Nielson and J. Tvedt. Comparing methods of interpolation for scattered volumetric data. In D. F. Rogers and R. A. Earnshaw, editors, State of the Art in Computer Graphics: Aspects of Visualization, pp. 67–86. Springer, New York, 1994.
L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, 60:259–268, 1992.
D. Tschumperlé and R. Deriche. Orthonormal vector sets regularization with PDE’s and applications. International Journal of Computer Vision, 50(3):237–252, December 2002.
J. Weickert. Anisotropic Diffusion in Image Processing. Teubner, Stuttgart, 1998.
J. Weickert and T. Brox. Diffusion and regularization of vector-and matrix-valued images. In M. Z. Nashed and O. Scherzer, editors, Inverse Problems, Image Analysis, and Medical Imaging, volume 313 of Contemporary Mathematics, pp. 251–268. AMS, Providence, 2002.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Weickert, J., Welk, M. (2006). Tensor Field Interpolation with PDEs. In: Weickert, J., Hagen, H. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31272-2_19
Download citation
DOI: https://doi.org/10.1007/3-540-31272-2_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-25032-6
Online ISBN: 978-3-540-31272-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)