[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Capacitated Partial Inverse Maximum Spanning Tree Under the Weighted \(l_{\infty }\)-norm

  • Conference paper
  • First Online:
Combinatorial Optimization and Applications (COCOA 2021)

Abstract

Given an edge weighted graph, and an acyclic edge set, the goal of the partial inverse maximum spanning tree problem is to modify the weight function as small as possible such that there exists a maximum spanning tree with respect to the new weight function containing the given edge set. In this paper, we consider this problem with capacitated constraint under the weighted \(l_{\infty }\)-norm. By studying the properties of the optimal value and a special kind of optimal solutions, combining the algorithm for the decision version of this problem with the Binary search method, we present a strongly polynomial-time algorithm for calculating the optimal value and an optimal solution.

Supported by National Numerical Windtunnel Project (No. NNW2019ZT5-B16), National Natural Science Foundation of China (Nos. 11771013, 11871256, 12071194, U20A2068), and the Basic Research Project of Qinghai (No. 2021-ZJ-703), Zhejiang Provincial Natural Science Foundation of China (No. LD19A010001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 79.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 99.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ben-Ayed, O., Blair, C.E.: Computational difficulties of bilevel linear programming. Oper. Res. 38(3), 556–560 (1990)

    Article  MathSciNet  Google Scholar 

  2. Chvátal, V.: Correction to: a De Bruijn-Erdős theorem in graphs? In: Gera, R., Haynes, T.W., Hedetniemi, S.T. (eds.) Graph Theory. PBM, pp. C1–C2. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97686-0_15

    Chapter  Google Scholar 

  3. Cai, M.-C., Duin, C.W., Yang, X., Zhang, J.: The partial inverse minimum spanning tree problem when weight increasing is forbidden. Eur. J. Oper. Res. 188, 348–353 (2008)

    Article  Google Scholar 

  4. Gassner, E.: The partial inverse minimum cut problem with \(L_1\)-norm is strongly NP-hard. RAIRO Oper. Res. 44, 241–249 (2010)

    Article  MathSciNet  Google Scholar 

  5. Hansen, P., Jaumard, B., Savard, G.: New branch-and-bound rules for linear bilevel programming. SIAM J. Sci. Stat. Comput. 13, 1194–1217 (1992)

    Article  MathSciNet  Google Scholar 

  6. Lai, T., Orlin, J.: The Complexity of Preprocessing. Research Report of Sloan School of Management. MIT (2003)

    Google Scholar 

  7. Li, S., Zhang, Z., Lai, H.-J.: Algorithms for constraint partial inverse matroid problem with weight increase forbidden. Theor. Comput. Sci. 640, 119–124 (2016)

    Article  MathSciNet  Google Scholar 

  8. Li, X., Shu, X., Huang, H., Bai, J.: Capacitated partial inverse maximum spanning tree under the weighted Hamming distance. J. Comb. Optim. 38(4), 1005–1018 (2019). https://doi.org/10.1007/s10878-019-00433-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, X., Zhang, Z., Du, D.-Z.: Partial inverse maximum spanning tree in which weight can only be decreased under \(l_p\)-norm. J. Glob. Optim. 70(3), 677–685 (2017). https://doi.org/10.1007/s10898-017-0554-5

    Article  MATH  Google Scholar 

  10. Li, X., Zhang, Z., Yang, R., Zhang, H., Du, D.-Z.: Approximation algorithms for capacitated partial inverse maximum spanning tree problem. J. Glob. Optim. 77(2), 319–340 (2019). https://doi.org/10.1007/s10898-019-00852-4

    Article  MathSciNet  MATH  Google Scholar 

  11. Yang, X.: Complexity of partial inverse assignment problem and partial inverse cut problem. RAIRO Oper. Res. 35, 117–126 (2001)

    Article  MathSciNet  Google Scholar 

  12. Yang, X., Zhang, J.: Partial inverse assignment problem under \(l_1\) norm. Oper. Res. Lett. 35, 23–28 (2007)

    Article  MathSciNet  Google Scholar 

  13. Yang, X., Zhang, J.: Inverse sorting problem by minimizing the total weighted number of changers and partial inverse sorting problem. Comput. Optim. Appl. 36(1), 55–66 (2007)

    Article  MathSciNet  Google Scholar 

  14. Zhang, Z., Li, S., Lai, H.-J., Du, D.-Z.: Algorithms for the partial inverse matroid problem in which weights can only be increased. J. Glob. Optim. 65(4), 801–811 (2016). https://doi.org/10.1007/s10898-016-0412-x

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyue Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Yang, R., Zhang, H., Zhang, Z. (2021). Capacitated Partial Inverse Maximum Spanning Tree Under the Weighted \(l_{\infty }\)-norm. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92681-6_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92680-9

  • Online ISBN: 978-3-030-92681-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics