[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Partial inverse maximum spanning tree in which weight can only be decreased under \(l_p\)-norm

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The maximum or minimum spanning tree problem is a classical combinatorial optimization problem. In this paper, we consider the partial inverse maximum spanning tree problem in which the weight function can only be decreased. Given a graph, an acyclic edge set, and an edge weight function, the goal of this problem is to decrease weights as little as possible such that there exists with respect to function containing the given edge set. If the given edge set has at least two edges, we show that this problem is APX-Hard. If the given edge set contains only one edge, we present a polynomial time algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahuja, R.K., Orlin, J.B.: Inverse optimiztion. Oper. Res. 49(5), 771–783 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)

    Book  MATH  Google Scholar 

  3. Burton, D., Toint, Ph.L.: On an instance of the inverse shortest paths problem. Math. Progr. 53(1), 45–61 (1992)

  4. Cai, M.-C., Duin, C.W., Yang, X., Zhang, J.: The partial inverse minimum spanning tree problem when weight increase is forbidden. Eur. J. Oper. Res. 188, 348–353 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheriyan, J., Hagerup, T., Mehlhorn, K.: An \(O(n^3)\)-time maximum-flow algorithm. SIAM J. Comput. 25(6), 1144–1170 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23, 864–894 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dell’Amico, M., Maffioli, F., Malucelli, F.: The base-matroid and inverse combinatorial optimization problems. Discrete Appl. Math. 128, 337–353 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Demange, M., Monnot, J.: An introductuion to inverse combinatorial problems. In: Paschos, V.Th (ed.) Paradigms of Combinatorial Optimization, 2nd edn. Wliey, Hoboken (2014)

    Google Scholar 

  9. Gassner, E.: The partial inverse minimum cut problem with \(L_1\)-norm is strongly NP-hard. RAIRO Oper. Res. 44, 241–249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guan, X., Pardalos, P.M., Zuo, X.: Inverse Max+Sum spanning tree problem by modifying the sum-cost vector under weighted \(l_{\infty }\) Norm. J. Glob. Optim. 61(1), 165–182 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heuberger, C.: Inverse combinatorial optimization: a survey on problems, methods, and results. J. Comb. Optim. 8, 329–361 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lai, T., Orlin, J.: The complexity of preprocessing. Research Report of Sloan School of Management, MIT (2003)

  13. Li, S., Zhang, Z., Lai, H.-J.: Algorithm for constraint partial inverse matroid problem with weight increase forbidden. Theor. Comput. Sci. 640, 119–124 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Orlin, J. B.: Max flows in \(O(nm)\) time, or better. In: Proceedings of the forty-fifth annual ACM Symposium on Theory of Computing (STOC 2013), 765–774 (2013)

  15. Yang, X.: Complexity of partial inverse assignment problem and partial inverse cut problem. RAIRO Oper. Res. 35, 117–126 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yang, X., Zhang, J.: Partial inverse assignment problem under \(l_1\) norm. Oper. Res. Lett. 35, 23–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, X., Zhang, J.: Inverse sorting problem by minimizing the total weighted number of changers and partial inverse sorting problems. Comput. Optim. Appl. 36(1), 55–66 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhang, Z., Li, S., Lai, H.-J., D, D.-Z.: Algorithms for the partial inverse matroid problem in which weights can only be increased. J. Glob. Optim. 65(4), 801–811 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research is supported by NSFC (Nos. 11571155, 11531011, and 61222201) and the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2017-163 and lzujbky-2016-102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Z. & Du, DZ. Partial inverse maximum spanning tree in which weight can only be decreased under \(l_p\)-norm. J Glob Optim 70, 677–685 (2018). https://doi.org/10.1007/s10898-017-0554-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0554-5

Keywords

Navigation