[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Capacitated partial inverse maximum spanning tree under the weighted Hamming distance

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Given an edge weighted graph, and an acyclic edge set, the goal of partial inverse maximum spanning tree problem is to modify the weight function as little as possible such that there exists a maximum spanning tree with respect to the new weight function containing the given edge set. In this paper, we consider this problem with capacitated constraint under the weighted Hamming distance. Under the weighted sum Hamming distance, if the given edge set has at least two edges, we show that this problem is APX-Hard even without the capacitated constraint; if the given edge set contains only one edge, we present a strongly polynomial time algorithm to solve it. Under the weighted bottleneck Hamming distance, we present an algorithm with time complexity \(O(m\log ^2 m)\), where m is the number of edges of the given graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahuja RK, Orlin JB (2000) A faster algorithm for the inverse spanning tree problem. J Algorithms 34:177–193

    Article  MathSciNet  Google Scholar 

  • Bondy JA, Murty USR (2008) Graph theory. Springer, New York

    Book  Google Scholar 

  • Cai M-C, Duin CW, Yang X, Zhang J (2008) The partial inverse minimum spanning tree problem when weight increasing is forbidden. Eur J Oper Res 188:348–353

    Article  Google Scholar 

  • Cheriyan J, Hagerup T, Mehlhorn K (1996) An \(O(n^3)\)-time maximum-flow algorithm. SIAM J Comput 25(6):1144–1170

    Article  MathSciNet  Google Scholar 

  • Dahlhaus E, Johnson DS, Papadimitriou CH, Seymour PD, Yannakakis M (1994) The complexity of multiterminal cuts. SIAM J Comput 23(4):864–894

    Article  MathSciNet  Google Scholar 

  • Dell’Amico M, Maffioli F, Malucelli F (2003) The Base-matroid and inverse combinatorial optimization problems. Discret Appl Math 128:337–353

    Article  MathSciNet  Google Scholar 

  • Gassner E (2010) The partial inverse minimum cut problem with \(L_1\)-norm is strongly NP-hard. RAIRO Oper Res 44:241–249

    Article  MathSciNet  Google Scholar 

  • Guan X, Zhang B (2012) Inverse 1-median problem on trees under weighted Hamming distance. J Glob Optim 54:75–82

    Article  MathSciNet  Google Scholar 

  • Guan X, Pardalos PM, Zuo X (2015) Inverse Max+Sum spanning tree problem by modifying the sum-cost vector under weighted \(l_\infty \) Norm. J Glob Optim 61:165–182

    Article  MathSciNet  Google Scholar 

  • He Y, Zhang B, Yao E (2005) Weighted inverse minimum spanning tree problems under hamming distance. J Comb Optim 9:91–100

    Article  MathSciNet  Google Scholar 

  • Hochbaum DS (2003) Efficient algorithms for the inverse spanning-tree problem. Oper Res 51(5):785–797

    Article  MathSciNet  Google Scholar 

  • Hochbaum DS, Queyranne M (2003) Minimizing a convex cost closure set. SIAM J Discret Math 16(2):192–207

    Article  MathSciNet  Google Scholar 

  • Lai T, Orlin J (2003) The complexity of preprocessing. In: Research report of Sloan school of management, MIT

  • Li S, Zhang Z, Lai H-J (2016) Algorithm for constraint partial inverse matroid problem with weight increase forbidden. Theor Comput Sci 640:119–124

    Article  MathSciNet  Google Scholar 

  • Li X, Zhang Z, Du D-Z (2018) Partial inverse maximum spanning tree in which weight can only be decreased under \(l_p\)-norm. J Glob Optim 70:677–685

    Article  Google Scholar 

  • Liu L, Wang Q (2009) Constrained inverse min-max spanning tree problems under the weighted Hamming distance. J Glob Optim 43:83–95

    Article  MathSciNet  Google Scholar 

  • Liu L, Yao E (2007) A weighted inverse minimum cut problem under the bottleneck type Hamming distance. Asia-Pac J Oper Res 24(5):725–736

    Article  MathSciNet  Google Scholar 

  • Liu L, Yao E (2008) Inverse min-max spanning tree problem under the weighted sum-type Hamming distance. Theor Comput Sci 396:28–34

    Article  MathSciNet  Google Scholar 

  • Liu L, Yao E (2013) Weighted inverse maximum perfect matching problems under the Hamming distance. J Glob Optim 55:549–557

    Article  MathSciNet  Google Scholar 

  • Liu L, Zhang J (2006) Inverse maximum flow problems under the weighted Hamming distance. J Comb Optim 12(4):395–408

    Article  MathSciNet  Google Scholar 

  • Liu L, Chen Y, Wu B, Yao E (2012) Weighted inverse minimum cut problem under the sum-type Hamming distance. Lect Notes Comput Sci 7285:26–35

    Article  Google Scholar 

  • Nguyen KT, Chassein A (2015) The inverse convex ordered 1-median problem on trees under Chebyshev norm and Hamming distance. Eur J Oper Res 247:774–781

    Article  MathSciNet  Google Scholar 

  • Nguyen KT, Sapasian AR (2016) The inverse 1-center problem on trees with varible edge lengths under Chebyshev norm and Hamming distance. J Comb Optim 32(3):872–884

    Article  MathSciNet  Google Scholar 

  • Orlin JB (2013) Maxflows in \(O(nm)\) time, or better. In: Proceedings of the forty-fifth annual ACM symposium on theory of computing (STOC 2013), pp 765–774

  • Papadimitriou C, Yannakakis M (1988) Optimization, approximations, and complexity classes. In: Proceedings of the twentieth annual ACM symposium on theory of computing (STOC 1988), pp 229–234

  • Sokkalingam PT, Ahuja RK, Orlin JB (1999) Solving inverse spanning tree problems through network flow techniques. Oper Res 47(2):291–298

    Article  MathSciNet  Google Scholar 

  • Wang L (2011) Branch-and-bound algorithms for the partial inverse mixed integer linear programming problem. J Glob Optim 51(3):463–471

    Article  MathSciNet  Google Scholar 

  • Yang X (2001) Complexity of partial inverse assignment problem and partial inverse cut problem. RAIRO Oper Res 35:117–126

    Article  MathSciNet  Google Scholar 

  • Yang X, Zhang J (2007a) Partial inverse assignment problem under \(l_1\) norm. Oper Res Lett 35:23–28

    Article  MathSciNet  Google Scholar 

  • Yang X, Zhang J (2007b) Inverse sorting problem by minimizing the total weighted number of changers and partial inverse sorting problems. Comput Optim Appl 36(1):55–66

    Article  MathSciNet  Google Scholar 

  • Zhang J, Xu S, Ma Z (1997) An algorithm for inverse minimum spanning tree problem. Optim Methods Softw 8(1):69–84

    Article  MathSciNet  Google Scholar 

  • Zhang B, Zhang J, He Y (2005) The center location improvement problem under the Hamming distance. J Comb Optim 9(2):187–198

    Article  MathSciNet  Google Scholar 

  • Zhang B, Zhang J, He Y (2006a) Constrained inverse minimum spanning tree problems under the bottleneck-type Hamming distance. J Glob Optim 34:467–474

    Article  MathSciNet  Google Scholar 

  • Zhang B, Zhang J, Qi L (2006b) The shortest path improvement problems under Hamming distance. J Comb Optim 12(4):351–361

    Article  MathSciNet  Google Scholar 

  • Zhang Z, Li S, Lai H-J, Du D-Z (2016) Algorithms for the partial inverse matroid problem in which weights can only be increased. J Glob Optim 65(4):801–811

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is partially supported by National Key Research and Development Plan of China (No. 2017YFB0202101), NSFC (Nos. 11571155 and 11871256) and the Fundamental Research Funds for the Central Universities (No. lzujbky-2017-163).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyue Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shu, X., Huang, H. et al. Capacitated partial inverse maximum spanning tree under the weighted Hamming distance. J Comb Optim 38, 1005–1018 (2019). https://doi.org/10.1007/s10878-019-00433-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-019-00433-x

Keywords

Navigation