[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Examination of NoSQL Transition and Data Mining Capabilities

  • Conference paper
  • First Online:
Metadata and Semantic Research (MTSR 2020)

Abstract

An estimated 2.5 quintillion bytes of data are created every day. This data explosion, along with new datatypes, objects, and the wide usage of social media networks, with an estimated 3.8 billion users worldwide, make the exploitation and manipulation of data by relational databases, cumbersome and problematic. NoSQL databases introduce new capabilities aiming at improving the functionalities offered by traditional SQL DBMS. This paper elaborates on ongoing research regarding NoSQL, focusing on the background behind their development, their basic characteristics, their categorization and the noticeable increase in popularity. Functional advantages and data mining capabilities that come with the usage of graph databases are also presented. Common data mining tasks with graphs are presented, facilitating implementation, as well as efficiency. The aim is to highlight concepts necessary for incorporating data mining techniques and graph database functionalities, eventually proposing an analytical framework offering a plethora of domain specific analytics. For example, a virus outbreak analytics framework allowing health and government officials to make appropriate decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Codd, E.F.: Relational completeness of data base sublanguages, pp. 65–98. IBM Corporation (1972)

    Google Scholar 

  2. Petrov, C.: 25 Big Data Statistics - How Big It Actually Is in 2020? (2020) https://techjury.net/blog/big-data-statistics/. Accessed 3 Aug 2020

  3. NoSQL, 1 August 2020. https://en.wikipedia.org/wiki/NoSQL. Accessed 4 Aug 2020

  4. Moniruzzaman, A.B.M., Hossain, S.A.: NoSQL database: new era of databases for big data analytics-classification, characteristics and comparison. arXiv preprint arXiv:1307.0191 (2013)

  5. Vaghani, R.: Use of NoSQL in industry, 17 December 2018. https://www.geeksforgeeks.org/use-of-nosql-in-industry. Accessed 5 Aug 2020

  6. Nayak, A., Poriya, A., Poojary, D.: Type of NOSQL databases and its comparison with relational databases. Int. J. Appl. Inf. Syst. 5(4), 16–19 (2013)

    Google Scholar 

  7. NoSQL Databases List by Hosting Data - Updated 2020, 03 July 2020. https://hostingdata.co.uk/nosql-database/. Accessed 5 Aug 2020

  8. Zollmann, J.: NoSQL databases. Software Engineering Research Group (2012). https://www.webcitation.org/6hA9zoqRd

  9. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. ACM SIGOPS Oper. Syst. Rev. 41(6), 205–220 (2007)

    Article  Google Scholar 

  10. Chang, F., et al.: Bigtable: a distributed storage system for structured data. ACM Trans. Comp. Syst. (TOCS) 26(2), 1–26 (2008)

    Article  Google Scholar 

  11. Shi, C., Li, Y., Zhang, J., Sun, Y., Philip, S.Y.: A survey of heterogeneous information network analysis. IEEE Trans. Knowl. Data Eng. 29(1), 17–37 (2016)

    Article  Google Scholar 

  12. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  13. Lafferty, J., McCallum, A., Pereira, F.C.: Conditional random fields: probabilistic models for segmenting and labeling sequence data (2001)

    Google Scholar 

  14. Koukaras, P., Tjortjis, C., Rousidis, D.: Social media types: introducing a data driven taxonomy. Computing 102(1), 295–340 (2019). https://doi.org/10.1007/s00607-019-00739-y

    Article  Google Scholar 

  15. Koukaras, P., Tjortjis, C.: Social media analytics, types and methodology. In: Tsihrintzis, G.A., Virvou, M., Sakkopoulos, E., Jain, L.C. (eds.) Machine Learning Paradigms. LAIS, vol. 1, pp. 401–427. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15628-2_12

    Chapter  Google Scholar 

  16. Rousidis, D., Koukaras, P., Tjortjis, C.: Social media prediction: a literature review. Multimedia Tools Appl. 79(9–10), 6279–6311 (2019). https://doi.org/10.1007/s11042-019-08291-9

    Article  Google Scholar 

  17. Koukaras, P., Berberidis, C., Tjortjis, C.: A semi-supervised learning approach for complex information networks. In: Hemanth, J., Bestak, R., Chen, J.I.Z. (eds.) Intelligent Data Communication Technologies and Internet of Things. Lecture Notes on Data Engineering and Communications Technologies, vol. 57, pp. 1–13. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-9509-7_1

    Chapter  Google Scholar 

  18. Koukaras, P., Rousidis, D., Tjortjis, C.: Forecasting and prevention mechanisms using social media in health care. In: Maglogiannis, I., Brahnam, S., Jain, L.C. (eds.) Advanced Computational Intelligence in Healthcare-7. SCI, vol. 891, pp. 121–137. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-662-61114-2_8

    Chapter  Google Scholar 

  19. Gupta, I., Raghavan, V., Ghosh, M.: Leveraging metadata in no SQL storage systems. In: 2015 IEEE 8th International Conference on Cloud Computing, pp. 57–64. IEEE (2015)

    Google Scholar 

  20. Lofstead, J., Ryan, A., Lawson, M.: Adventures in NoSQL for metadata management. In: Weiland, M., Juckeland, G., Alam, S., Jagode, H. (eds.) ISC High Performance 2019. LNCS, vol. 11887, pp. 227–239. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34356-9_19

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Tjortjis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rousidis, D., Koukaras, P., Tjortjis, C. (2021). Examination of NoSQL Transition and Data Mining Capabilities. In: Garoufallou, E., Ovalle-Perandones, MA. (eds) Metadata and Semantic Research. MTSR 2020. Communications in Computer and Information Science, vol 1355. Springer, Cham. https://doi.org/10.1007/978-3-030-71903-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-71903-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-71902-9

  • Online ISBN: 978-3-030-71903-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics