[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Forecasting and Prevention Mechanisms Using Social Media in Health Care

  • Chapter
  • First Online:
Advanced Computational Intelligence in Healthcare-7

Part of the book series: Studies in Computational Intelligence ((SCI,volume 891))

Abstract

Social media (SM) is establishing a new era of tools with multi-usage capabilities. Governments, businesses, organizations, as well as individuals are engaging in, implementing their promotions, sharing opinions and propagating decisions on SM. We need filters, validators and a way of weighting expressed opinions in order to regulate this continuous data stream. This chapter presents trends and attempts by the research community regarding: (a) the influence of SM on attitudes towards a specific domain, related to public health and safety (e.g. diseases, vaccines, mental health), (b) frameworks and tools for monitoring their evolution and (c) techniques for suggesting useful interventions for nudging public sentiment towards best practices. Based on the state of the art, we discuss and assess whether SM can be used as means of prejudice or esteem regarding online opinions on health care. We group the state of the art in the following categories: virus–illness outbreaks, anti-vaccination, mental health, social trends and food and environment. Furthermore, we give more weight to virus–illness outbreaks and the anti-vaccination issues/trends in order to examine disease outbreak prevention methodologies and vaccination/anti-vaccination incentives, whilst discussing their performance. The goal is to consolidate the state of the art and give well-supported directions for future work. To sum up, this chapter discusses the aforementioned concepts and related biases, elaborating on forecasting and prevention attempts using SM data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Koukaras P., Tjortjis C.: Social media analytics, types and methodology. In: Tsihrintzis G., Virvou M., Sakkopoulos E., Jain L. (eds.) Machine Learning Paradigms. Learning and Analytics in Intelligent Systems, vol. 1. Springer, New Yory (2019)

    Google Scholar 

  2. Rousidis D., Koukaras P., Tjortjis C.: Social Media Prediction A Literature Review, to appear at Multimedia Tools and Applications, Springer. (2020). https://doi.org/10.1007/s11042-019-08291-9

  3. Dominus, S.: The crash and burn of an autism guru. New York Times 2011 April 20. http://www.nytimes.com/2011/04/24/magazine/mag-24Autism-t.html. Last Accessed 23 Sep 2017

  4. Chen, J., Chen, H., Wu, Z., Hu, D., Pan, J.Z.: Forecasting smog-related health hazard based on social media and physical sensor. Inf. Syst. 64, 281–291 (2017)

    Article  Google Scholar 

  5. Zhao, L., Chen, F., Lu, C. T., & Ramakrishnan, N. (2015, June). Spatiotemporal event forecasting in social media. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 963–971. Society for Industrial and Applied Mathematics

    Google Scholar 

  6. Stewart, A. M. (2009). Vaccines and Autism: The Evidence and the Law

    Google Scholar 

  7. Qiu, J., Hu, H., Zhou, S., Liu, Q.: Vaccine scandal and crisis in public confidence in China. Lancet 387(10036), 2382 (2016)

    Article  Google Scholar 

  8. Mitra, T., Counts, S., Pennebaker, J.W.: Understanding Anti-Vaccination Attitudes in Social Media. In: ICWSM, pp. 269–278. (2016)

    Google Scholar 

  9. Brunson, E.K.: The impact of social networks on parents’ vaccination decisions. Pediatrics (2013). (peds-2012)

    Google Scholar 

  10. World Health Organization: Measles Costs 2013. Retrieved from http://www.euro.who.int/en/media-centre/sections/press-releases/2013/04/measles-costs/ (2017)

  11. Suijkerbuijk, A.W., Woudenberg, T., Hahné, S.J., Lochlainn, L.N., de Melker, H.E., Ruijs, W.L., Lugnér, A.K.: Economic costs of measles outbreak in the Netherlands, 2013–2014. Emerg. Infect. Dis. 21(11), 2067 (2015)

    Article  Google Scholar 

  12. Marx, G.E.: Public health economic burden associated with two single measles case investigations—colorado, 2016–2017. MMWR. Morb. Mortal. Wkly. Rep. 66 (2017)

    Google Scholar 

  13. Kata, A.: Anti-vaccine activists, Web 2.0, and the postmodern paradigm–An overview of tactics and tropes used online by the anti-vaccination movement. Vaccine. 30(25), 3778–3789 (2012)

    Google Scholar 

  14. Santillana, M., Nguyen, A.T., Dredze, M., Paul, M.J., Nsoesie, E.O., Brownstein, J.S.: Combining search, social media, and traditional data sources to improve influenza surveillance. PLoS Comput. Biol. 11(10), e1004513 (2015)

    Article  Google Scholar 

  15. Huang, X., Smith, M.C., Paul, M.J., Ryzhkov, D., Quinn, S.C., Broniatowski, D.A., Dredze, M.: Examining patterns of influenza vaccination in social media (2017)

    Google Scholar 

  16. Subramani, S., Michalska, S., Wang, H., Whittaker, F., Heyward, B.: Text mining and real-time analytics of twitter data: a case study of australian hay fever prediction. In: International Conference on Health Information Science, pp. 134–145. Springer, Cham (2018)

    Google Scholar 

  17. Rubin, L., Landsman, K.: The importance of social networking in a national polio vaccine campaign. Pediatrics. e20154658 (2016)

    Google Scholar 

  18. Dredze, M., Broniatowski, D.A., Smith, M., Hilyard, K.M.: Understanding vaccine refusal: why we need social media now. Am. J. Prev. Med. 50(4), 550 (2016)

    Article  Google Scholar 

  19. Radzikowski, J., Stefanidis, A., Jacobsen, K.H., Croitoru, A., Crooks, A., Delamater, P.L.: The measles vaccination narrative in Twitter: a quantitative analysis. JMIR Public Health Surveill. 2(1) (2016)

    Google Scholar 

  20. European Centre for Disease and Control Prevention: Retrieved from: https://ecdc.europa.eu/en/news-events/epidemiological-update-measles-monitoring-european-outbreaks-15-September-2017 (2017)

  21. Wolfe, R.M., Sharp, L.K., Lipsky, M.S.: Content and design attributes of antivaccination web sites. JAMA 287(24), 3245–3248 (2002)

    Article  Google Scholar 

  22. Ward, J.K.: Rethinking the antivaccine movement concept: a case study of public criticism of the swine flu vaccine’s safety in France. Soc. Sci. Med. 159, 48–57 (2016)

    Article  Google Scholar 

  23. Moran, M.B., Lucas, M., Everhart, K., Morgan, A., Prickett, E.: What makes anti-vaccine websites persuasive? A content analysis of techniques used by anti-vaccine websites to engender anti-vaccine sentiment. J. Commun. Healthc. 9(3), 151–163 (2016)

    Article  Google Scholar 

  24. Tomeny, T.S., Vargo, C.J., El-Toukhy, S.: Geographic and demographic correlates of autism-related anti-vaccine beliefs on Twitter, 2009–15. Soc. Sci. Med. (2017)

    Google Scholar 

  25. Omer, S.B., Orenstein, W.A., Koplan, J.P.: Go big and go fast—vaccine refusal and disease eradication. N. Engl. J. Med. 368(15), 1374–1376 (2013)

    Article  Google Scholar 

  26. Wilson, K., Keelan, J.: Social media and the empowering of opponents of medical technologies: the case of anti-vaccinationism. J. Med. Internet Res. 15(5) (2013)

    Google Scholar 

  27. Gu, Z., Badger, P., Su, J., Zhang, E., Li, X., Zhang, L.: A vaccine crisis in the era of social media. Natl. Sci. Rev. (2017)

    Google Scholar 

  28. Aquino, F., Donzelli, G., De Franco, E., Privitera, G., Lopalco, P.L., Carducci, A.: The web and public confidence in MMR vaccination in Italy. Vaccine 35(35), 4494–4498 (2017)

    Article  Google Scholar 

  29. Ward, J.K., Peretti-Watel, P., Larson, H.J., Raude, J., Verger, P.: Vaccine-criticism on the internet: new insights based on French-speaking websites. Vaccine 33(8), 1063–1070 (2015)

    Article  Google Scholar 

  30. Bolton, K., Memory, K., McMillan, C.: Herd Immunity: Does Social Media Affect Adherence to the CDC Childhood Vaccination Schedule? Purs.- J. Undergrad. Res. Univ. Tenn. 6(1), 5 (2015)

    Google Scholar 

  31. Evrony, A., Caplan, A.: The overlooked dangers of anti-vaccination groups’ social media presence. Hum. Vaccines Immunother. 1 (2017)

    Google Scholar 

  32. Faasse, K., Chatman, C.J., Martin, L.R.: A comparison of language use in pro-and anti-vaccination comments in response to a high-profile Facebook post. Vaccine 34(47), 5808–5814 (2016)

    Article  Google Scholar 

  33. Dunn, A.G., Surian, D., Leask, J., Dey, A., Mandl, K.D., Coiera, E.: Mapping information exposure on social media to explain differences in HPV vaccine coverage in the United States. Vaccine 35(23), 3033–3040 (2017)

    Article  Google Scholar 

  34. Vraga, E.K., Bode, L.: I do not believe you: how providing a source corrects health misperceptions across social media platforms. Inf. Commun. Soc. 1–17 (2017)

    Google Scholar 

  35. Glanz, J.M., Kraus, C.R., Daley, M.F.: Addressing parental vaccine concerns: engagement, balance, and timing. PLoS Biol. 13(8), e1002227 (2015)

    Article  Google Scholar 

  36. World Health Organization: Measles and rubella surveillance data 2017. Retrieved from http://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/ (2017)

  37. World Health Organization: Measles and rubella surveillance data—data, statistics and graphics 2017. Retrieved from http://www.who.int/immunization/monitoring_surveillance/data/en/ (2017)

  38. List of Countries by Projected GDP 2017: Statistics times. Retrieved from http://statisticstimes.com/economy/countries-by-projected-gdp.php (2017)

  39. ElTayeby, O., Eaglin, T., Abdullah, M., Burlinson, D., Dou, W., Yao, L.: A feasibility study on identifying drinking-related contents in Facebook through mining heterogeneous data. Health Inform. J. (2018). https://doi.org/10.1177/1460458218798084

  40. World Health Organization: Measles 2017. Retrieved from http://www.who.int/mediacentre/factsheets/fs286/en/ (2017)

  41. World Health Organization: Global vaccine action plan—secretariat annual report 2016. Retrieved from http://www.who.int/immunization/global_vaccine_action_plan/gvap_2016_secretariat_report_measles.pdf (2017)

  42. Pullen, L.C.: Vaccination choice influenced by social networks. Retrieved by http://www.medscape.com/viewarticle/782558 (2013)

  43. Burke-Garcia, A., Berry, C.N., Kreps, G.L., Wright, K.B.: The power and perspective of mommy bloggers: formative research with social media opinion leaders about HPV vaccination. In: Proceedings of the 50th Hawaii International Conference on System Sciences (2017)

    Google Scholar 

  44. Wendy Sue Swanson: Social networks influence parents’ vaccine decisions. Retrieved by: http://www.kevinmd.com/blog/2013/08/social-networks-influence-parents-vaccine-decisions.html (2013)

  45. Kang, G.J., Ewing-Nelson, S.R., Mackey, L., Schlitt, J.T., Marathe, A., Abbas, K.M., Swarup, S.: Semantic network analysis of vaccine sentiment in online social media. Vaccine (2017)

    Google Scholar 

  46. De Choudhury, M., Sharma, S., Kiciman, E.: Characterizing dietary choices, nutrition, and language in food deserts via social media. In: Proceedings of the 19th ACM Conference on Computer-Supported Cooperative Work and Social Computing, pp. 1157–1170. ACM (2016)

    Google Scholar 

  47. Sadilek, A., Kautz, H. A., DiPrete, L., Labus, B., Portman, E., Teitel, J., Silenzio, V.: Deploying nEmesis: preventing foodborne illness by data mining social media. In: AAAI, pp. 3982–3990 (2016)

    Google Scholar 

  48. Rankings 2017.: THE LEGATUM PROSPERITY INDEX™ 2017. Retrieved from http://www.prosperity.com/rankings (2017)

  49. Chen, S.Y., Anderson, S., Kutty, P.K., Lugo, F., McDonald, M., Rota, P.A., Ortega-Sanchez, I.R., Komatsu, K., Armstrong, G.L., Sunenshine, R., Seward, J.F.: Health care–associated measles outbreak in the United States after an importation: challenges and economic impact. J. Infect. Dis. 203(11), 1517–1525 (2011)

    Article  Google Scholar 

  50. Wichmann, O., Siedler, A., Sagebiel, D., Hellenbrand, W., Santibanez, S., Mankertz, A., Vogt, G., Treeck, U.V., Krause, G.: Further efforts needed to achieve measles elimination in Germany: results of an outbreak investigation. Bull. World Health Organ. 87(2), 108–115 (2009)

    Article  Google Scholar 

  51. Filia, A., Tavilla, A., Bella, A., Magurano, F., Ansaldi, F., Chironna, M., Nicoletti, L., Palù, G., Iannazzo, S., Declich, S., Rota, M.C.: Measles in Italy, July 2009 to September 2010. Euro. Surveill. 16(29), 19925 (2011)

    Google Scholar 

  52. Carabin, H., Edmunds, W.J., Kou, U., Van den Hof, S.: The average cost of measles cases and adverse events following vaccination in industrialised countries. BMC Public Health 2(1), 22 (2002)

    Article  Google Scholar 

  53. Lo, N.C., Hotez, P.J.: Public health and economic consequences of vaccine hesitancy for measles in the United States. JAMA Pediatr. 171(9), 887–892 (2017)

    Article  Google Scholar 

  54. Bahk, C.Y., Cumming, M., Paushter, L., Madoff, L.C., Thomson, A., Brownstein, J.S.: Publicly available online tool facilitates real-time monitoring of vaccine conversations and sentiments. Health Aff. 35(2), 341–347 (2016)

    Article  Google Scholar 

  55. Larru, B., Offit, P.: Communicating vaccine science to the public. J. Infect. 69, S2–S4 (2014)

    Article  Google Scholar 

  56. Dong, W., Liao, S., Xu, Y., Feng, X.: Leading effect of social media for financial fraud disclosure: a text mining based analytics (2016)

    Google Scholar 

  57. Isotalo, V., Saari, P., Paasivaara, M., Steineker, A., Gloor, P.A.: Predicting 2016 US presidential election polls with online and media variables. In: Designing Networks for Innovation and Improvisation, pp. 45–53. Springer, New York (2016)

    Google Scholar 

  58. Elshendy, M., Colladon, A.F., Battistoni, E., Gloor, P.A.: Using four different online media sources to forecast the crude oil price. J. Inf. Sci. https://doi.org/10.1177/0165551517698298 (2017)

  59. Craig, P., Dieppe, P., Macintyre, S., Michie, S., Nazareth, I., Petticrew, M.: Developing and evaluating complex interventions: the new Medical Research Council guidance. Int. J. Nurs. Stud. 50(5), 587–592 (2013)

    Article  Google Scholar 

  60. Schoen, H., Gayo-Avello, D., Takis Metaxas, P., Mustafaraj, E., Strohmaier, M., Gloor, P.: The power of prediction with social media. Internet Res. 23(5), 528–543 (2013)

    Article  Google Scholar 

  61. Phillips, L., Dowling, C., Shaffer, K., Hodas, N., Volkova, S.: Using social media to predict the future: a systematic literature review. arXiv preprint arXiv:1706.06134. (2017)

  62. Pechmann, C., Pan, L., Delucchi, K., Lakon, C.M., Prochaska, J.J.: Development of a Twitter-based intervention for smoking cessation that encourages high-quality social media interactions via automessages. J. Med. Internet Res. 17(2) (2015)

    Google Scholar 

  63. Bull, S.S., Levine, D.K., Black, S.R., Schmiege, S.J., Santelli, J.: Social media–delivered sexual health intervention: a cluster randomized controlled trial. Am. J. Prev. Med. 43(5), 467–474 (2012)

    Article  Google Scholar 

  64. Martinez, O., Wu, E., Shultz, A.Z., Capote, J., Rios, J.L., Sandfort, T., Manusov, J., Ovejero, H., Carballo-Dieguez, A., Baray, S.C., Moya, E., Matos, J.L., DelaCruz, J.J., Remien, R.H., Rhodes, S.D.: Still a hard-to-reach population? Using social media to recruit Latino gay couples for an HIV intervention adaptation study. J. Med. Internet Res. 16(4) (2014)

    Google Scholar 

  65. Larson, H.J., Smith, D.M., Paterson, P., Cumming, M., Eckersberger, E., Freifeld, C.C., … Madoff, L.C.: Measuring vaccine confidence: analysis of data obtained by a media surveillance system used to analyse public concerns about vaccines. Lancet Infect. Dis. 13(7), 606–613 (2013)

    Google Scholar 

  66. Kostkova, P., Mano, V., Larson, H. J., Schulz, W. S.: Who is spreading rumours about vaccines?: influential user impact modelling in social networks. In: Proceedings of the 2017 International Conference on Digital Health, pp. 48–52. ACM (2017)

    Google Scholar 

  67. Bode, L., Vraga, E.K.: See something, say something: Correction of global health misinformation on social media. Health Commun. 1–10 (2017)

    Google Scholar 

  68. Stahl, J.P., Cohen, R., Denis, F., Gaudelus, J., Martinot, A., Lery, T., Lepetit, H.: The impact of the web and social networks on vaccination. New challenges and opportunities offered to fight against vaccine hesitancy. Med. Mal. Infect. 46(3), 117–122 (2016)

    Google Scholar 

  69. Seeman, N., Rizo, C.: Assessing and responding in real time to online anti-vaccine sentiment during a flu pandemic. Healthc. Q. (Toronto, Ont.). 13, 8–15 (2010)

    Google Scholar 

  70. Finnegan, G.: What can social media tell us about vaccination rates? Vaccines today, Retrieved by: https://www.vaccinestoday.eu/stories/what-can-social-media-tell-us-about-vaccination-rates/ (2011)

  71. Koukaras, P., Tjortjis, C., Rousidis, D.: Social media types: introducing a data driven taxonomy. Computing. 102(1), 295–340 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Tjortjis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koukaras, P., Rousidis, D., Tjortjis, C. (2020). Forecasting and Prevention Mechanisms Using Social Media in Health Care. In: Maglogiannis, I., Brahnam, S., Jain, L. (eds) Advanced Computational Intelligence in Healthcare-7. Studies in Computational Intelligence, vol 891. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61114-2_8

Download citation

Publish with us

Policies and ethics