Abstract
Logarithmic vector fields along an isolated complete intersection singularity (ICIS) are considered in the context of computational complex analysis. Based on the theory of local polar varieties, an effective method is introduced for computing a set of generators, over a local ring, of the modules of germs of logarithmic vector fields. Underlying ideas of our approach are the use of a parametric version of the concept of local cohomology and the Matlis duality. The algorithms are designed to output a set of representatives of logarithmic vector fields which is suitable to study their complex analytic properties. Some examples are given to illustrate the resulting algorithms.
This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (18K03320 and 18K03214).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, W., Loustaunau, P.: An Introduction to Gröbner Bases. AMS, Providence (1994)
Afzal, D., Afzal, F., Mulback, M., Pfister, G., Yaqub, A.: Unimodal ICIS, a classifier. Stud. Sci. Math. Hungarica 54, 374–403 (2017)
Aleksandrov, A.G.: Cohomology of a quasihomogeneous complete intersection. Math. USSR Izv. 26, 437–477 (1986)
Aleksandrov, A.G.: A de Rham complex of nonisolated singularities. Funct. Anal. Appl. 22, 131–133 (1988)
Aleksandrov, A.G.: Logarithmic differential forms on Cohen-Macaulay varieties. Methods Appl. Anal. 24, 11–32 (2017)
Aleksandrov, A.G., Tsikh, A.K.: Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière. C. R. Acad. Sci. Paris Sér. I. Math. 333, 973–978 (2001)
Aleksandrov, A.G., Tsikh, A.K.: Multi-logarithmic differential forms on complete intersections. J. Siber. Federal Univ. 2, 105–124 (2008)
Bruce, J.W., Roberts, R.M.: Critical points of functions on an analytic varieties. Topology 27, 57–90 (1988)
Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993)
Damon, J.: On the legacy of free divisors II: free\(^\ast \) divisors and complete intersections. Moscow Math. J. 3, 361–395 (2003)
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4–1-2 – a computer algebra system for polynomial computations (2019). http://www.singular.uni-kl.de
De Jong, T., Pfister, G.: Local Analytic Geometry. Vieweg (2000)
de Bobadilla, J.F.: Relative Morsification theory. Topology 43, 925–982 (2004)
Giusti, M.: Classification des singularités isolées simples d’intersections complètes. In: Singularities Part I, Proceedings of Symposium on Pure Mathematics, vol. 40, pp. 457–494. AMS (1983)
Granger, M., Schulze, M.: Normal crossing properties of complex hypersurfaces via logarithmic residues. Compos. Math. 150, 1607–1622 (2014)
Grothendieck, A.: Local Cohomology. Lecture Notes in Mathematics, vol. 41. Springer, Heidelberg (1967). https://doi.org/10.1007/BFb0073971. Notes by R. Hartshorne
Hauser, H., Müller, G.: Affine varieties and Lie algebras of vector fields. Manusc. Math. 80–2, 309–337 (1993)
Hauser, H., Müller, G.: On the Lie algebra \(\theta (x)\) of vector fields on a singularity. J. Math. Sci. Univ. Tokyo 1, 239–250 (1994)
Kas, A., Schlessinger, M.: On the versal deformation of a complex space with an isolated singularity. Math. Ann. 196, 23–29 (1972)
Kashiwara, M., Kawai, T.: On holonomic systems of microdifferential equations. III. Res. Inst. Math. Sci. 17, 813–979 (1981)
Kunz, E.: Residues and duality for projective algebraic varieties. American Mathematical Socity (2009)
Looijenga, E.J.N.: Isolated Singular Points on Complete Intersections. London Mathematical Society Lecture Note Series, vol. 77. Cambridge University Press, Cambridge (1984)
Matlis, E.: Injective modules over Noetherian rings. Pac. J. Math. 8, 511–528 (1958)
Nabeshima, K.: On the computation of parametric Gröbner bases for modules and syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)
Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. In: Robertz, D. (ed.) International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 334–348. ACM, New York (2015)
Nabeshima, K., Tajima, S.: Solving extended ideal membership problems in rings of convergent power series via Gröbner bases. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 252–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_22
Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)
Nabeshima, K., Tajima, S.: Computation methods of logarithmic vector fields associated with semi-weighted homogeneous isolated hypersurface singularities. Tsukuba J. Math. 42, 191–231 (2018)
Nabeshima, K., Tajima, S.: Computing logarithmic vector fields and Bruce-Roberts Milnor numbers via local cohomology classes. Rev. Roumaine Math. Pures Appl. 64, 521–538 (2019)
Nabeshima, K., Tajima, S.: Alternative algorithms for computing generic \(\mu ^{\ast }\)-sequences and local Euler obstructions of isolated hypersurface singularities. J. Algebra Appl. 18(8) (2019). https://doi.org/10.1142/S02194988195015614
Noro, M., Takeshima, T.: Risa/Asir-a computer algebra system. In: Wang, P. (ed.) International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 387–396. ACM, New York (1992)
Nuño-Ballesteros, J.J., Oréfice, B., Tomazella, J.N.: The Bruce-Roberts number of a function on a weighted homogeneous hypersurface. Q. J. Math. 64, 269–280 (2013)
Nuño-Ballesteros, J.J., Oréfice-Okamoto, B., Tomazella, J.N.: Non-negative deformations of weighted homogeneous singularities. Glasg. Math. J. 60, 175–185 (2018)
Oréfice-Okamoto, B.: O número de Milnor de uma singularidade isolada. Tese, São Carlos (2011)
Pol, D.: Characterizations of freeness for equidimensional subspaces. J. Singularities 20, 1–30 (2020)
Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 265–291 (1980)
Shibuta, T., Tajima, S.: An algorithm for computing the Hilbert-Samuel multiplicities and reductions of zero-dimensional ideals of Cohen-Macaulay local ring. J. Symb. Comput. 96, 108–121 (2020)
Tajima, S.: On polar varieties, logarithmic vector fields and holonomic D-modules. RIMS Kôkyûroku Bessatsu 40, 41–51 (2013)
Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)
Tajima, S., Nabeshima, K.: An algorithm for computing torsion differential forms associated to an isolated hypersurface singularity. Math. Comput. Sci. (to appear) https://doi.org/10.1007/s11786-020-00486-w
Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney. Singularités à Cargèse. Astérisque 7–8, 285–362 (1973)
Teissier, B.: Varietes polaires II multiplicites polaires, sections planes, et conditions de whitney. In: Aroca, J.M., Buchweitz, R., Giusti, M., Merle, M. (eds.) Algebraic Geometry. LNM, vol. 961, pp. 314–491. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0071291
Terao, H.: The bifurcation set and logarithmic vector fields. Math. Ann. 263, 313–321 (1983)
Treves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, Cambridge (1967)
Wahl J.: Automorphisms and deformations of quasi-homogeneous singularities. In: Proceedings of Symposia in Pure Mathematics, vol. 40-2, pp. 613–624. American Mathematics Society, Providence (1983)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Tajima, S., Shibuta, T., Nabeshima, K. (2020). Computing Logarithmic Vector Fields Along an ICIS Germ via Matlis Duality. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-60026-6_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-60025-9
Online ISBN: 978-3-030-60026-6
eBook Packages: Computer ScienceComputer Science (R0)