[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Computing Logarithmic Vector Fields Along an ICIS Germ via Matlis Duality

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

Abstract

Logarithmic vector fields along an isolated complete intersection singularity (ICIS) are considered in the context of computational complex analysis. Based on the theory of local polar varieties, an effective method is introduced for computing a set of generators, over a local ring, of the modules of germs of logarithmic vector fields. Underlying ideas of our approach are the use of a parametric version of the concept of local cohomology and the Matlis duality. The algorithms are designed to output a set of representatives of logarithmic vector fields which is suitable to study their complex analytic properties. Some examples are given to illustrate the resulting algorithms.

This work has been partly supported by JSPS Grant-in-Aid for Scientific Research (C) (18K03320 and 18K03214).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, W., Loustaunau, P.: An Introduction to Gröbner Bases. AMS, Providence (1994)

    Book  Google Scholar 

  2. Afzal, D., Afzal, F., Mulback, M., Pfister, G., Yaqub, A.: Unimodal ICIS, a classifier. Stud. Sci. Math. Hungarica 54, 374–403 (2017)

    MATH  Google Scholar 

  3. Aleksandrov, A.G.: Cohomology of a quasihomogeneous complete intersection. Math. USSR Izv. 26, 437–477 (1986)

    Article  Google Scholar 

  4. Aleksandrov, A.G.: A de Rham complex of nonisolated singularities. Funct. Anal. Appl. 22, 131–133 (1988)

    Article  MathSciNet  Google Scholar 

  5. Aleksandrov, A.G.: Logarithmic differential forms on Cohen-Macaulay varieties. Methods Appl. Anal. 24, 11–32 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Aleksandrov, A.G., Tsikh, A.K.: Théorie des résidus de Leray et formes de Barlet sur une intersection complète singulière. C. R. Acad. Sci. Paris Sér. I. Math. 333, 973–978 (2001)

    Article  MathSciNet  Google Scholar 

  7. Aleksandrov, A.G., Tsikh, A.K.: Multi-logarithmic differential forms on complete intersections. J. Siber. Federal Univ. 2, 105–124 (2008)

    Google Scholar 

  8. Bruce, J.W., Roberts, R.M.: Critical points of functions on an analytic varieties. Topology 27, 57–90 (1988)

    Article  MathSciNet  Google Scholar 

  9. Bruns, W., Herzog, J.: Cohen-Macaulay Rings. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  10. Damon, J.: On the legacy of free divisors II: free\(^\ast \) divisors and complete intersections. Moscow Math. J. 3, 361–395 (2003)

    Article  MathSciNet  Google Scholar 

  11. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 4–1-2 – a computer algebra system for polynomial computations (2019). http://www.singular.uni-kl.de

  12. De Jong, T., Pfister, G.: Local Analytic Geometry. Vieweg (2000)

    Google Scholar 

  13. de Bobadilla, J.F.: Relative Morsification theory. Topology 43, 925–982 (2004)

    Article  MathSciNet  Google Scholar 

  14. Giusti, M.: Classification des singularités isolées simples d’intersections complètes. In: Singularities Part I, Proceedings of Symposium on Pure Mathematics, vol. 40, pp. 457–494. AMS (1983)

    Google Scholar 

  15. Granger, M., Schulze, M.: Normal crossing properties of complex hypersurfaces via logarithmic residues. Compos. Math. 150, 1607–1622 (2014)

    Article  MathSciNet  Google Scholar 

  16. Grothendieck, A.: Local Cohomology. Lecture Notes in Mathematics, vol. 41. Springer, Heidelberg (1967). https://doi.org/10.1007/BFb0073971. Notes by R. Hartshorne

    Book  MATH  Google Scholar 

  17. Hauser, H., Müller, G.: Affine varieties and Lie algebras of vector fields. Manusc. Math. 80–2, 309–337 (1993)

    Article  MathSciNet  Google Scholar 

  18. Hauser, H., Müller, G.: On the Lie algebra \(\theta (x)\) of vector fields on a singularity. J. Math. Sci. Univ. Tokyo 1, 239–250 (1994)

    MathSciNet  MATH  Google Scholar 

  19. Kas, A., Schlessinger, M.: On the versal deformation of a complex space with an isolated singularity. Math. Ann. 196, 23–29 (1972)

    Article  MathSciNet  Google Scholar 

  20. Kashiwara, M., Kawai, T.: On holonomic systems of microdifferential equations. III. Res. Inst. Math. Sci. 17, 813–979 (1981)

    Article  Google Scholar 

  21. Kunz, E.: Residues and duality for projective algebraic varieties. American Mathematical Socity (2009)

    Google Scholar 

  22. Looijenga, E.J.N.: Isolated Singular Points on Complete Intersections. London Mathematical Society Lecture Note Series, vol. 77. Cambridge University Press, Cambridge (1984)

    Book  Google Scholar 

  23. Matlis, E.: Injective modules over Noetherian rings. Pac. J. Math. 8, 511–528 (1958)

    Article  MathSciNet  Google Scholar 

  24. Nabeshima, K.: On the computation of parametric Gröbner bases for modules and syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)

    Article  MathSciNet  Google Scholar 

  25. Nabeshima, K., Tajima, S.: Computing logarithmic vector fields associated with parametric semi-quasihomogeneous hypersurface isolated singularities. In: Robertz, D. (ed.) International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 334–348. ACM, New York (2015)

    MATH  Google Scholar 

  26. Nabeshima, K., Tajima, S.: Solving extended ideal membership problems in rings of convergent power series via Gröbner bases. In: Kotsireas, I.S., Rump, S.M., Yap, C.K. (eds.) MACIS 2015. LNCS, vol. 9582, pp. 252–267. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32859-1_22

    Chapter  MATH  Google Scholar 

  27. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals. J. Symb. Comput. 82, 91–122 (2017)

    Article  MathSciNet  Google Scholar 

  28. Nabeshima, K., Tajima, S.: Computation methods of logarithmic vector fields associated with semi-weighted homogeneous isolated hypersurface singularities. Tsukuba J. Math. 42, 191–231 (2018)

    Article  MathSciNet  Google Scholar 

  29. Nabeshima, K., Tajima, S.: Computing logarithmic vector fields and Bruce-Roberts Milnor numbers via local cohomology classes. Rev. Roumaine Math. Pures Appl. 64, 521–538 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Nabeshima, K., Tajima, S.: Alternative algorithms for computing generic \(\mu ^{\ast }\)-sequences and local Euler obstructions of isolated hypersurface singularities. J. Algebra Appl. 18(8) (2019). https://doi.org/10.1142/S02194988195015614

  31. Noro, M., Takeshima, T.: Risa/Asir-a computer algebra system. In: Wang, P. (ed.) International Symposium on Symbolic and Algebraic Computation (ISSAC), pp. 387–396. ACM, New York (1992)

    Google Scholar 

  32. Nuño-Ballesteros, J.J., Oréfice, B., Tomazella, J.N.: The Bruce-Roberts number of a function on a weighted homogeneous hypersurface. Q. J. Math. 64, 269–280 (2013)

    Article  MathSciNet  Google Scholar 

  33. Nuño-Ballesteros, J.J., Oréfice-Okamoto, B., Tomazella, J.N.: Non-negative deformations of weighted homogeneous singularities. Glasg. Math. J. 60, 175–185 (2018)

    Article  MathSciNet  Google Scholar 

  34. Oréfice-Okamoto, B.: O número de Milnor de uma singularidade isolada. Tese, São Carlos (2011)

    Google Scholar 

  35. Pol, D.: Characterizations of freeness for equidimensional subspaces. J. Singularities 20, 1–30 (2020)

    MathSciNet  MATH  Google Scholar 

  36. Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27, 265–291 (1980)

    MathSciNet  MATH  Google Scholar 

  37. Shibuta, T., Tajima, S.: An algorithm for computing the Hilbert-Samuel multiplicities and reductions of zero-dimensional ideals of Cohen-Macaulay local ring. J. Symb. Comput. 96, 108–121 (2020)

    Article  MathSciNet  Google Scholar 

  38. Tajima, S.: On polar varieties, logarithmic vector fields and holonomic D-modules. RIMS Kôkyûroku Bessatsu 40, 41–51 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)

    Article  MathSciNet  Google Scholar 

  40. Tajima, S., Nabeshima, K.: An algorithm for computing torsion differential forms associated to an isolated hypersurface singularity. Math. Comput. Sci. (to appear) https://doi.org/10.1007/s11786-020-00486-w

  41. Teissier, B.: Cycles évanescents, sections planes et conditions de Whitney. Singularités à Cargèse. Astérisque 7–8, 285–362 (1973)

    MATH  Google Scholar 

  42. Teissier, B.: Varietes polaires II multiplicites polaires, sections planes, et conditions de whitney. In: Aroca, J.M., Buchweitz, R., Giusti, M., Merle, M. (eds.) Algebraic Geometry. LNM, vol. 961, pp. 314–491. Springer, Heidelberg (1982). https://doi.org/10.1007/BFb0071291

    Chapter  Google Scholar 

  43. Terao, H.: The bifurcation set and logarithmic vector fields. Math. Ann. 263, 313–321 (1983)

    Article  MathSciNet  Google Scholar 

  44. Treves, F.: Topological Vector Spaces, Distributions and Kernels. Academic Press, Cambridge (1967)

    MATH  Google Scholar 

  45. Wahl J.: Automorphisms and deformations of quasi-homogeneous singularities. In: Proceedings of Symposia in Pure Mathematics, vol. 40-2, pp. 613–624. American Mathematics Society, Providence (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tajima, S., Shibuta, T., Nabeshima, K. (2020). Computing Logarithmic Vector Fields Along an ICIS Germ via Matlis Duality. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics