[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Solving Extended Ideal Membership Problems in Rings of Convergent Power Series via Gröbner Bases

  • Conference paper
  • First Online:
Mathematical Aspects of Computer and Information Sciences (MACIS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9582))

Abstract

An extended ideal membership algorithm is considered in the ring of convergent power series. It is shown that the problem for zero-dimensional ideals in a local ring can be solved in a polynomial ring. The key of the proposed method is the use of ideal quotients in polynomial rings. A new algorithm is given to solve the extended ideal membership problems in local rings. A generalization of the resulting algorithm to ideals with parameters is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The degree reverse lex. monomial order with the coordinate (xy) or (xyz), is used in the implementation of ExtIMP.

  2. 2.

    syz \((g_1,g_2,\ldots ,g_r)\) outputs a standard basis of the module of syzygies w.r.t. the generators \(g_1,g_2,\ldots ,g_r\) where \(g_1,g_2,\ldots ,g_r \in \mathbb {Q}[x]\). Thus, the command syz outputs the similar results. For each \(i \in \{1,\ldots , 8\}\), syz \((h,\frac{\partial f_i}{\partial x},\frac{\partial f_i}{\partial y},\frac{\partial f_i}{\partial z})\) (or syz \((h,\frac{\partial f_i}{\partial x},\frac{\partial f_i}{\partial y})\)) has been executed in Table 1.

  3. 3.

    The negative degree reverse lex. monomial order with the coordinate (xy) or (xyz), is used in Singular’s command syz.

References

  1. Becker, T., Weispfenning, V.: Gröbner Bases. Springer, New York (1992)

    Google Scholar 

  2. Briançon, J., Granger, M., Maisonobe, P., Miniconi, M.: Algorithme de calcul du polunôme du Bernstein : cas non dégénéré. Ann. Inst. Fourier 39, 553–610 (1989)

    Article  MATH  Google Scholar 

  3. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 3rd edn. Springer, New York (2007)

    Book  MATH  Google Scholar 

  4. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)

    Book  MATH  Google Scholar 

  5. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6 - A computer algebra system for polynomial computations (2012). http://www.singular.uni-kl.de

  6. Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31, 2–9 (1997)

    Article  Google Scholar 

  7. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  8. Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149 (1957)

    Google Scholar 

  9. Hartshorne, R., Grothendieck, A.: Local Cohomology; a Seminar. Lecture Notes in Mathematics, 41. Springer, New York (1967)

    Google Scholar 

  10. Kalkbrener, M.: On the stability of Gröbner bases under specializations. J. Symbolic Comput. 24, 51–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kapur, D., Sun, D., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of the ISSAC 2010, pp. 29–36. ACM (2010)

    Google Scholar 

  12. Kulikov, V.S.: Mixed Hodge Structures and Singularities. Cambridge University Press, New York (1998)

    Book  MATH  Google Scholar 

  13. Manubens, M., Montes, A.: Improving DISPGB algorithm using the discriminant ideal. J. Symbolic Comput. 41, 1245–1263 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. J. Symbolic Comput. 45, 1391–1425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mora, T.: An algorithm to compute the equations of tangent cones. In: Calmet, Jacques (ed.) ISSAC 1982 and EUROCAM 1982. LNCS, vol. 144, pp. 158–165. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  16. Mora, T., Pfister, G., Traverso, T.: An introduction to the tangent cone algorithm. Adv. Comput. Res. 6, 199–270 (1992). Issued in robotics and nonlinear geometry

    Google Scholar 

  17. Nabeshima, K.: On the computation of parametric Gröbner bases for modules and syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 248–259. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proceedings of the ISSAC 2014, pp. 351–358. ACM (2014)

    Google Scholar 

  20. Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals (2015). arXiv:1508.06724

  21. Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings of the ISSAC 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html

  22. Schulze, M.: Algorithms for the gauss-manin connections. J. Symbolic Comput. 32, 549–564 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schulze, M.: Algorithmic gauss-manin connection - algorithms to compute hodge-theoretic invariants of isolated hypersurface singularities. vom Fachbereich Mathematik der Universität Kaiserslautern zum Verleihyng des akademischen Grades Doktor der Naturwissenschaften (2002)

    Google Scholar 

  24. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of the ISSAC 2006, pp. 326–331. ACM (2006)

    Google Scholar 

  25. Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings and Modules. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  26. Tajima, S., Nakamura, Y.: Algebraic local cohomology class attached to quasi-homogeneous isolated hypersurface singularities. Publ. Res. Inst. Math. Sci. 41, 1–10 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symbolic Comput. 44, 435–448 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tajima, S., Nakamura, Y.: Algebraic local cohomology classes attached to unimodal singularities. Publ. Res. Inst. Math. Sci. 48, 21–43 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Comput. 36, 669–683 (1992)

    Article  MATH  Google Scholar 

  31. Yano, T.: On the theory of \(b\)-functions. Publ. Res. Inst. Math. Sci. 14, 111–202 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank referees for careful reading our manuscript and for giving useful comments. This work has been partly supported by JSPS Grant-in-Aid for Young Scientists (B) (No.15K17513) and Grant-in-Aid for Scientific Research (C) (No.15K04891).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsusuke Nabeshima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Nabeshima, K., Tajima, S. (2016). Solving Extended Ideal Membership Problems in Rings of Convergent Power Series via Gröbner Bases. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32859-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32858-4

  • Online ISBN: 978-3-319-32859-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics