Abstract
An extended ideal membership algorithm is considered in the ring of convergent power series. It is shown that the problem for zero-dimensional ideals in a local ring can be solved in a polynomial ring. The key of the proposed method is the use of ideal quotients in polynomial rings. A new algorithm is given to solve the extended ideal membership problems in local rings. A generalization of the resulting algorithm to ideals with parameters is also described.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The degree reverse lex. monomial order with the coordinate (x, y) or (x, y, z), is used in the implementation of ExtIMP.
- 2.
syz \((g_1,g_2,\ldots ,g_r)\) outputs a standard basis of the module of syzygies w.r.t. the generators \(g_1,g_2,\ldots ,g_r\) where \(g_1,g_2,\ldots ,g_r \in \mathbb {Q}[x]\). Thus, the command syz outputs the similar results. For each \(i \in \{1,\ldots , 8\}\), syz \((h,\frac{\partial f_i}{\partial x},\frac{\partial f_i}{\partial y},\frac{\partial f_i}{\partial z})\) (or syz \((h,\frac{\partial f_i}{\partial x},\frac{\partial f_i}{\partial y})\)) has been executed in Table 1.
- 3.
The negative degree reverse lex. monomial order with the coordinate (x, y) or (x, y, z), is used in Singular’s command syz.
References
Becker, T., Weispfenning, V.: Gröbner Bases. Springer, New York (1992)
Briançon, J., Granger, M., Maisonobe, P., Miniconi, M.: Algorithme de calcul du polunôme du Bernstein : cas non dégénéré. Ann. Inst. Fourier 39, 553–610 (1989)
Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 3rd edn. Springer, New York (2007)
Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (1998)
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-6 - A computer algebra system for polynomial computations (2012). http://www.singular.uni-kl.de
Dolzmann, A., Sturm, T.: Redlog: computer algebra meets computer logic. ACM SIGSAM Bull. 31, 2–9 (1997)
Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra, 2nd edn. Springer, Heidelberg (2008)
Grothendieck, A.: Théorèmes de dualité pour les faisceaux algébriques cohérents. Séminaire Bourbaki 149 (1957)
Hartshorne, R., Grothendieck, A.: Local Cohomology; a Seminar. Lecture Notes in Mathematics, 41. Springer, New York (1967)
Kalkbrener, M.: On the stability of Gröbner bases under specializations. J. Symbolic Comput. 24, 51–58 (1997)
Kapur, D., Sun, D., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Proceedings of the ISSAC 2010, pp. 29–36. ACM (2010)
Kulikov, V.S.: Mixed Hodge Structures and Singularities. Cambridge University Press, New York (1998)
Manubens, M., Montes, A.: Improving DISPGB algorithm using the discriminant ideal. J. Symbolic Comput. 41, 1245–1263 (2006)
Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. J. Symbolic Comput. 45, 1391–1425 (2010)
Mora, T.: An algorithm to compute the equations of tangent cones. In: Calmet, Jacques (ed.) ISSAC 1982 and EUROCAM 1982. LNCS, vol. 144, pp. 158–165. Springer, Heidelberg (1982)
Mora, T., Pfister, G., Traverso, T.: An introduction to the tangent cone algorithm. Adv. Comput. Res. 6, 199–270 (1992). Issued in robotics and nonlinear geometry
Nabeshima, K.: On the computation of parametric Gröbner bases for modules and syzygies. Jpn. J. Ind. Appl. Math. 27, 217–238 (2010)
Nabeshima, K.: Stability conditions of monomial bases and comprehensive Gröbner systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2012. LNCS, vol. 7442, pp. 248–259. Springer, Heidelberg (2012)
Nabeshima, K., Tajima, S.: On efficient algorithms for computing parametric local cohomology classes associated with semi-quasihomogeneous singularities and standard bases. In: Proceedings of the ISSAC 2014, pp. 351–358. ACM (2014)
Nabeshima, K., Tajima, S.: Algebraic local cohomology with parameters and parametric standard bases for zero-dimensional ideals (2015). arXiv:1508.06724
Noro, M., Takeshima, T.: Risa/Asir - a computer algebra system. In: Proceedings of the ISSAC 1992, pp. 387–396. ACM (1992). http://www.math.kobe-u.ac.jp/Asir/asir.html
Schulze, M.: Algorithms for the gauss-manin connections. J. Symbolic Comput. 32, 549–564 (2001)
Schulze, M.: Algorithmic gauss-manin connection - algorithms to compute hodge-theoretic invariants of isolated hypersurface singularities. vom Fachbereich Mathematik der Universität Kaiserslautern zum Verleihyng des akademischen Grades Doktor der Naturwissenschaften (2002)
Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Proceedings of the ISSAC 2006, pp. 326–331. ACM (2006)
Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings and Modules. Cambridge University Press, Cambridge (2006)
Tajima, S., Nakamura, Y.: Algebraic local cohomology class attached to quasi-homogeneous isolated hypersurface singularities. Publ. Res. Inst. Math. Sci. 41, 1–10 (2005)
Tajima, S., Nakamura, Y.: Annihilating ideals for an algebraic local cohomology class. J. Symbolic Comput. 44, 435–448 (2009)
Tajima, S., Nakamura, Y.: Algebraic local cohomology classes attached to unimodal singularities. Publ. Res. Inst. Math. Sci. 48, 21–43 (2012)
Tajima, S., Nakamura, Y., Nabeshima, K.: Standard bases and algebraic local cohomology for zero dimensional ideals. Adv. Stud. Pure Math. 56, 341–361 (2009)
Weispfenning, V.: Comprehensive Gröbner bases. J. Symbolic Comput. 36, 669–683 (1992)
Yano, T.: On the theory of \(b\)-functions. Publ. Res. Inst. Math. Sci. 14, 111–202 (1978)
Acknowledgments
We thank referees for careful reading our manuscript and for giving useful comments. This work has been partly supported by JSPS Grant-in-Aid for Young Scientists (B) (No.15K17513) and Grant-in-Aid for Scientific Research (C) (No.15K04891).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Nabeshima, K., Tajima, S. (2016). Solving Extended Ideal Membership Problems in Rings of Convergent Power Series via Gröbner Bases. In: Kotsireas, I., Rump, S., Yap, C. (eds) Mathematical Aspects of Computer and Information Sciences. MACIS 2015. Lecture Notes in Computer Science(), vol 9582. Springer, Cham. https://doi.org/10.1007/978-3-319-32859-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-32859-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32858-4
Online ISBN: 978-3-319-32859-1
eBook Packages: Computer ScienceComputer Science (R0)