Abstract
A new stability condition of monomial bases is introduced. This stability condition is stronger than Kapur-Sun-Wang’s one. Moreover, a new algorithm for computing comprehensive Gröbner systems, is also introduced by using the new stability condition. A number of segments generated by the new algorithm is smaller than that of segments of in Kapur-Sun-Wang’s algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Becker, T.: On Gröbner bases under specialization. Applicable Algebra in Engineering, Communication and Computing 5, 1–8 (1994)
Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-3, A computer algebra system for polynomial computations (2011)
Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)
Fortuna, E., Gianni, P., Trager, B.: Degree reduction under specialization. Journal of Pure and Applied Algebra 164(1), 153–163 (2001)
Gianni, P.: Properties of Gröbner bases under specializations. In: Davenport, J. (ed.) EUROCAL 1987, pp. 293–297. ACM Press (1987)
Kalkbrener, M.: Solving Systems of Algebraic Equations Using Gröbner Base. In: Davenport, J. (ed.) EUROCAL 1987. LNCS, vol. 378, pp. 293–297. Springer, Heidelberg (1987)
Kalkbrener, M.: On the stability of Gröbner bases under specializations. Journal of Symbolic Computation 24, 51–58 (1997)
Kapur, D.: An approach for solving systems of parametric polynomial equations. In: Saraswat, V., Hentenryck, P. (eds.) Principles and Practice of Constraint Programming, pp. 217–244. MIT Press (1995)
Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Watt, S. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 29–36. ACM Press (2010)
Montes, A.: A new algorithm for discussing Gröbner basis with parameters. Journal of Symbolic Computation 33(1-2), 183–208 (2002)
Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. Journal of Symbolic Computation 45(12), 1391–1425 (2010)
Nabeshima, K.: A speed-up of the algorithm for computing comprehensive Gröbner systems. In: Brown, C. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 299–306. ACM Press (2007)
Noro, M., Takeshima, T.: Risa/Asir- A computer algebra system. In: Wang, P. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 387–396. ACM Press (1992)
Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases. Journal of Symbolic Computation 36(3-4), 649–667 (2003)
Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Dumas, J.-G. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 326–331. ACM Press (2006)
Weispfenning, V.: Comprehensive Gröbner bases. Journal of Symbolic Computation 14(1), 1–29 (1992)
Weispfenning, V.: Canonical comprehensive Gröbner bases. Journal of Symbolic Computation 36(3-4), 669–683 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nabeshima, K. (2012). Stability Conditions of Monomial Bases and Comprehensive Gröbner Systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-32973-9_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-32972-2
Online ISBN: 978-3-642-32973-9
eBook Packages: Computer ScienceComputer Science (R0)