[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Stability Conditions of Monomial Bases and Comprehensive Gröbner Systems

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7442))

Included in the following conference series:

Abstract

A new stability condition of monomial bases is introduced. This stability condition is stronger than Kapur-Sun-Wang’s one. Moreover, a new algorithm for computing comprehensive Gröbner systems, is also introduced by using the new stability condition. A number of segments generated by the new algorithm is smaller than that of segments of in Kapur-Sun-Wang’s algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Becker, T.: On Gröbner bases under specialization. Applicable Algebra in Engineering, Communication and Computing 5, 1–8 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: Singular 3-1-3, A computer algebra system for polynomial computations (2011)

    Google Scholar 

  3. Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bulletin 31(2), 2–9 (1997)

    Article  MathSciNet  Google Scholar 

  4. Fortuna, E., Gianni, P., Trager, B.: Degree reduction under specialization. Journal of Pure and Applied Algebra 164(1), 153–163 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gianni, P.: Properties of Gröbner bases under specializations. In: Davenport, J. (ed.) EUROCAL 1987, pp. 293–297. ACM Press (1987)

    Google Scholar 

  6. Kalkbrener, M.: Solving Systems of Algebraic Equations Using Gröbner Base. In: Davenport, J. (ed.) EUROCAL 1987. LNCS, vol. 378, pp. 293–297. Springer, Heidelberg (1987)

    Google Scholar 

  7. Kalkbrener, M.: On the stability of Gröbner bases under specializations. Journal of Symbolic Computation 24, 51–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kapur, D.: An approach for solving systems of parametric polynomial equations. In: Saraswat, V., Hentenryck, P. (eds.) Principles and Practice of Constraint Programming, pp. 217–244. MIT Press (1995)

    Google Scholar 

  9. Kapur, D., Sun, Y., Wang, D.: A new algorithm for computing comprehensive Gröbner systems. In: Watt, S. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 29–36. ACM Press (2010)

    Google Scholar 

  10. Montes, A.: A new algorithm for discussing Gröbner basis with parameters. Journal of Symbolic Computation 33(1-2), 183–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Montes, A., Wibmer, M.: Gröbner bases for polynomial systems with parameters. Journal of Symbolic Computation 45(12), 1391–1425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nabeshima, K.: A speed-up of the algorithm for computing comprehensive Gröbner systems. In: Brown, C. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 299–306. ACM Press (2007)

    Google Scholar 

  13. Noro, M., Takeshima, T.: Risa/Asir- A computer algebra system. In: Wang, P. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 387–396. ACM Press (1992)

    Google Scholar 

  14. Suzuki, A., Sato, Y.: An alternative approach to comprehensive Gröbner bases. Journal of Symbolic Computation 36(3-4), 649–667 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases. In: Dumas, J.-G. (ed.) International Symposium on Symbolic and Algebraic Computation, pp. 326–331. ACM Press (2006)

    Google Scholar 

  16. Weispfenning, V.: Comprehensive Gröbner bases. Journal of Symbolic Computation 14(1), 1–29 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Weispfenning, V.: Canonical comprehensive Gröbner bases. Journal of Symbolic Computation 36(3-4), 669–683 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nabeshima, K. (2012). Stability Conditions of Monomial Bases and Comprehensive Gröbner Systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2012. Lecture Notes in Computer Science, vol 7442. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32973-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32973-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32972-2

  • Online ISBN: 978-3-642-32973-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics