[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

IRA-EMO: Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

Abstract

We propose a new interactive evolutionary multiobjective optimization method, IRA-EMO. At each iteration, the decision maker (DM) expresses her/his preferences as an interesting interval for objective function values. The DM also specifies the number of representative Pareto optimal solutions in these intervals referred to as regions of interest one wants to study. Finally, a real-life engineering three-objective optimization problem is used to demonstrate how IRA-EMO works in practice for finding the most preferred solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code is freely available at https://github.com/rsain/IRA-EMO.

References

  1. Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.): Multiobjective Optimization. LNCS, vol. 5252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88908-3

    Book  Google Scholar 

  2. Cheng, R., Jin, Y., Olhofer, M., Sendhoff, B.: A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 20(5), 773–791 (2016)

    Article  Google Scholar 

  3. Deb, K., Miettinen, K., Chaudhuri, S.: Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans. Evol. Comput. 14(6), 821–841 (2010)

    Article  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Deb, K., Sundar, J., Ubay, B., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithm. Int. J. Comput. Intell. Res. 2(6), 273–286 (2006)

    MathSciNet  Google Scholar 

  6. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)

    Article  Google Scholar 

  7. Gomes, A., Antunes, C.H., Martins, A.G.: A multiple objective approach to direct load control using an interactive evolutionary algorithm. IEEE Trans. Power Syst. 22(3), 1004–1011 (2007)

    Article  Google Scholar 

  8. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-objective decision making. In: 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 721–728 (2011)

    Google Scholar 

  9. Hakanen, J., Chugh, T., Sindhya, K., Jin, Y., Miettinen, K.: Connections of reference vectors and different types of preference information in interactive multiobjective evolutionary algorithms. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016)

    Google Scholar 

  10. Kaliszewski, I., Miroforidis, J., Podkopaev, D.: Interactive multiple criteria decision making based on preference driven evolutionary multiobjective optimization with controllable accuracy. Eur. J. Oper. Res. 216(1), 188–199 (2012)

    Article  MathSciNet  Google Scholar 

  11. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  12. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer, Boston (1999)

    MATH  Google Scholar 

  13. Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R.: An interactive evolutionary multiobjective optimization method: interactive WASF-GA. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 249–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_17

    Chapter  Google Scholar 

  14. Ruiz, A.B., Luque, M., Ruiz, F., Saborido, R.: A combined interactive procedure using preference-based evolutionary multiobjective optimization. Application to the efficiency improvement of the auxiliary services of power plants. Expert Syst. Appl. 42(21), 7466–7482 (2015)

    Article  Google Scholar 

  15. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm. J. Global Optim. 62(1), 101–129 (2015)

    Article  MathSciNet  Google Scholar 

  16. Saborido, R., Ruiz, A.B., Luque, M.: Global WASF-GA: an evolutionary algorithm in multiobjective optimization to approximate the whole Pareto optimal front. Evol. Comput. 25(2), 309–349 (2017)

    Article  Google Scholar 

  17. Thiele, L., Miettinen, K., Korhonen, P., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. Evol. Comput. 17(3), 411–436 (2009)

    Article  Google Scholar 

  18. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Applications, vol. 177, pp. 468–486. Springer, Berlin (1980). https://doi.org/10.1007/978-3-642-48782-8_32

    Chapter  Google Scholar 

  19. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  20. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

Download references

Acknowledgements

This research is funded by the Spanish Government (ECO2017-88883-R and ECO2017-90573-REDT), the Andalusian Regional Government (SEJ-532) and the Academy of Finland (project 287496). Ana B. Ruiz thanks the post-doctoral fellowship “Captación de Talento para la Investigación” at the Univ. of Málaga. The research is related to thematic research area DEMO (Univ. of Jyvaskyla).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén Saborido .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saborido, R., Ruiz, A.B., Luque, M., Miettinen, K. (2019). IRA-EMO: Interactive Method Using Reservation and Aspiration Levels for Evolutionary Multiobjective Optimization. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics