[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Indicator-Based Selection in Multiobjective Search

  • Conference paper
Parallel Problem Solving from Nature - PPSN VIII (PPSN 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3242))

Included in the following conference series:

Abstract

This paper discusses how preference information of the decision maker can in general be integrated into multiobjective search. The main idea is to first define the optimization goal in terms of a binary performance measure (indicator) and then to directly use this measure in the selection process. To this end, we propose a general indicator-based evolutionary algorithm (IBEA) that can be combined with arbitrary indicators. In contrast to existing algorithms, IBEA can be adapted to the preferences of the user and moreover does not require any additional diversity preservation mechanism such as fitness sharing to be used. It is shown on several continuous and discrete benchmark problems that IBEA can substantially improve on the results generated by two popular algorithms, namely NSGA-II and SPEA2, with respect to different performance measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 56.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 72.00
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 174–188 (2003)

    Article  Google Scholar 

  2. Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, New York (2002)

    MATH  Google Scholar 

  3. Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  4. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: CEC 2002, pp. 825–830. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  7. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., et al. (eds.) Evolutionary Computation Based Multi-Criteria Optimization: Theoretical Advances and Applications, Springer, Heidelberg (2004) (to appear)

    Google Scholar 

  8. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms – part ii: Application example. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 38–47 (1998)

    Article  Google Scholar 

  9. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations of the non-dominated set. Technical report, Institute of Mathematical Modeling, Technical University of Denmark, IMM Technical Report IMM-REP-1998-7 (1998)

    Google Scholar 

  10. Knowles, J., Corne, D.: On metrics for comparing non-dominated sets. In: CEC 2002, Piscataway, NJ, pp. 711–716. IEEE Press, Los Alamitos (2002)

    Google Scholar 

  11. Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD thesis, University of Reading (2002)

    Google Scholar 

  12. Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN I, pp. 193–197. Springer, Heidelberg (1991)

    Google Scholar 

  13. Laumanns, M., Zitzler, E., Thiele, L.: On the effects of archiving, elitism, and density based selection in evolutionary multi-objective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 181–196. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Thiele, L., Chakraborty, S., Gries, M., Künzli, S.: Design space exploration of network processor architectures. In: Franklin, M., et al. (eds.) Network Processor Design Issues and Practices, October 2002, vol. 1, ch. 4, Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  15. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  16. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., et al. (eds.) EUROGEN 2001. International Center for Numerical Methods in Engineering (CIMNE), pp. 95–100 (2001)

    Google Scholar 

  17. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  18. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zitzler, E., Künzli, S. (2004). Indicator-Based Selection in Multiobjective Search. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_84

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30217-9_84

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23092-2

  • Online ISBN: 978-3-540-30217-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics