Abstract
This paper discusses how preference information of the decision maker can in general be integrated into multiobjective search. The main idea is to first define the optimization goal in terms of a binary performance measure (indicator) and then to directly use this measure in the selection process. To this end, we propose a general indicator-based evolutionary algorithm (IBEA) that can be combined with arbitrary indicators. In contrast to existing algorithms, IBEA can be adapted to the preferences of the user and moreover does not require any additional diversity preservation mechanism such as fitness sharing to be used. It is shown on several continuous and discrete benchmark problems that IBEA can substantially improve on the results generated by two popular algorithms, namely NSGA-II and SPEA2, with respect to different performance measures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bosman, P.A.N., Thierens, D.: The balance between proximity and diversity in multiobjective evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(2), 174–188 (2003)
Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer, New York (2002)
Deb, K.: Multi-objective optimization using evolutionary algorithms. Wiley, Chichester (2001)
Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)
Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: CEC 2002, pp. 825–830. IEEE Press, Los Alamitos (2002)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., et al. (eds.) Evolutionary Computation Based Multi-Criteria Optimization: Theoretical Advances and Applications, Springer, Heidelberg (2004) (to appear)
Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms – part ii: Application example. IEEE Transactions on Systems, Man, and Cybernetics 28(1), 38–47 (1998)
Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations of the non-dominated set. Technical report, Institute of Mathematical Modeling, Technical University of Denmark, IMM Technical Report IMM-REP-1998-7 (1998)
Knowles, J., Corne, D.: On metrics for comparing non-dominated sets. In: CEC 2002, Piscataway, NJ, pp. 711–716. IEEE Press, Los Alamitos (2002)
Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. PhD thesis, University of Reading (2002)
Kursawe, F.: A variant of evolution strategies for vector optimization. In: Schwefel, H.-P., Männer, R. (eds.) PPSN I, pp. 193–197. Springer, Heidelberg (1991)
Laumanns, M., Zitzler, E., Thiele, L.: On the effects of archiving, elitism, and density based selection in evolutionary multi-objective optimization. In: Zitzler, E., Deb, K., Thiele, L., Coello Coello, C.A., Corne, D.W. (eds.) EMO 2001. LNCS, vol. 1993, pp. 181–196. Springer, Heidelberg (2001)
Thiele, L., Chakraborty, S., Gries, M., Künzli, S.: Design space exploration of network processor architectures. In: Franklin, M., et al. (eds.) Network Processor Design Issues and Practices, October 2002, vol. 1, ch. 4, Morgan Kaufmann, San Francisco (2002)
Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for Multiobjective Optimization. In: Giannakoglou, K., et al. (eds.) EUROGEN 2001. International Center for Numerical Methods in Engineering (CIMNE), pp. 95–100 (2001)
Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zitzler, E., Künzli, S. (2004). Indicator-Based Selection in Multiobjective Search. In: Yao, X., et al. Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30217-9_84
Download citation
DOI: https://doi.org/10.1007/978-3-540-30217-9_84
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23092-2
Online ISBN: 978-3-540-30217-9
eBook Packages: Springer Book Archive