[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Interactive Evolutionary Multiobjective Optimization Method: Interactive WASF-GA

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9019))

Included in the following conference series:

Abstract

In this paper, we describe an interactive evolutionary algorithm called Interactive WASF-GA to solve multiobjective optimization problems. This algorithm is based on a preference-based evolutionary multiobjective optimization algorithm called WASF-GA. In Interactive WASF-GA, a decision maker provides preference information at each iteration simply as a reference point consisting of desirable objective function values and the number of solutions to be compared. Using this information, the desired number of solutions is generated to represent the region of interest of the Pareto optimal front associated to the reference point given. Interactive WASF-GA implies a much lower computational cost than the original WASF-GA because it generates a small number of solutions. This speeds up the convergence of the algorithm, making it suitable for many decision-making problems. Its efficiency and usefulness is demonstrated with a five-objective optimization problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007)

    MATH  Google Scholar 

  2. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  3. Deb, K., Miettinen, K., Chaudhuri, S.: Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Transactions on Evolutionary Computation 14(6), 821–841 (2010)

    Article  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  5. Deb, K., Sundar, J., Ubay, B., Chaudhuri, S.: Reference point based multi-objective optimization using evolutionary algorithm. International Journal of Computational Intelligence Research 2(6), 273–286 (2006)

    MathSciNet  Google Scholar 

  6. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Congress on Evolutionary Computation, CEC-2002, pp. 825–830 (2002)

    Google Scholar 

  7. Durillo, J.J., Nebro, A.J.: jMetal: A java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)

    Article  Google Scholar 

  8. Figueira, J.R., Greco, S., Mousseau, V., Słowiński, R.: Interactive multiobjective optimization using a set of additive value functions. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 97–119. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Gong, M., Liu, F., Zhang, W., Jiao, L., Zhang, Q.: Interactive MOEA/D for multi-objective decision making. In: 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 721–728 (2011)

    Google Scholar 

  10. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Transactions on Evolutionary Computation 10(5), 477–506 (2006)

    Article  Google Scholar 

  11. Luque, M., Ruiz, F., Steuer, R.E.: Modified interactive Chebyshev algorithm (MICA) for convex multiobjective programming. European Journal of Operational Research 204(3), 557–564 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Pressley, Berkeley (1967)

    Google Scholar 

  13. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  14. Miettinen, K.: Survey of methods to visualize alternatives in multiple criteria decision making problems. OR Spectrum 36(1), 3–37 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. Miettinen, K., Mäkelä, M.M.: On scalarizing functions in multiobjective optimization. OR Spectrum 24(2), 193–213 (2002)

    Article  MATH  Google Scholar 

  16. Miettinen, K., Ruiz, F., Wierzbicki, A.P.: Introduction to multiobjective optimization: interactive approaches. In: Branke, J., Deb, K., Miettinen, K., Słowiński, R. (eds.) Multiobjective Optimization. LNCS, vol. 5252, pp. 27–57. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Ruiz, A.B., Saborido, R., Luque, M.: A preference-based evolutionary algorithm for multiobjective optimization: The weighting achievement scalarizing function genetic algorithm. Journal of Global Optimization (2014, in press). doi:10.1007/s10898-014-0214-y

  18. Sindhya, K., Ruiz, A.B., Miettinen, K.: A preference based interactive evolutionary algorithm for multi-objective optimization: PIE. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 212–225. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  19. Sinha, A., Korhonen, P., Wallenius, J., Deb, K.: An interactive evolutionary multi-objective optimization algorithm with a limited number of decision maker calls. European Journal of Operational Research 233(3), 674–688 (2014)

    Article  MathSciNet  Google Scholar 

  20. Szczepanski, M., Wierzbicki, A.P.: Application of multiple crieterion evolutionary algorithm to vector optimization, decision support and reference point approaches. Journal of Telecommunications and Information Technology 3(3), 16–33 (2003)

    Google Scholar 

  21. Thiele, L., Miettinen, K., Korhonen, P., Molina, J.: A preference-based evolutionary algorithm for multi-objective optimization. Evolutionary Computation 17(3), 411–436 (2009)

    Article  Google Scholar 

  22. Wang, R., Purshouse, R.C., Fleming, P.J.: Preference-inspired coevolutionary algorithms for many-objective optimization. IEEE Transactions on Evolutionary Computation 17(4), 474–494 (2013)

    Article  Google Scholar 

  23. Wang, R., Purshouse, R.C., Fleming, P.J.: “Whatever works best for you”- a new method for a priori and progressive multi-objective optimisation. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 337–351. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  24. Wierzbicki, A.P.: The use of reference objectives in multiobjective optimization. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making, Theory and Applications, pp. 468–486. Springer (1980)

    Google Scholar 

  25. Zhang, Q., Li, H.: MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)

    Article  Google Scholar 

  26. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8(2), 173–195 (2000)

    Article  Google Scholar 

  27. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana B. Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ruiz, A.B., Luque, M., Miettinen, K., Saborido, R. (2015). An Interactive Evolutionary Multiobjective Optimization Method: Interactive WASF-GA. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C. (eds) Evolutionary Multi-Criterion Optimization. EMO 2015. Lecture Notes in Computer Science(), vol 9019. Springer, Cham. https://doi.org/10.1007/978-3-319-15892-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15892-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15891-4

  • Online ISBN: 978-3-319-15892-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics