Abstract
Recent studies with neuroimaging modalities have been elucidating a structure of a whole network of the brain and its functional activity. The characteristics of various functional neural activities and network structures exhibit skewed and long-tailed distributions. However, it remains unclear how heavy-tailed structural distribution affects functional distribution. In this study, we constructed spiking neural networks composed of two modules with excitatory post-synaptic potential (EPSP) following log-normal distribution. Through the evaluation of multi-scale entropy analysis and its surrogate data analysis, we reveal that the long-tailed synaptic weight distribution enhances the complexity of spiking activity at large temporal scales and emerges non-linear dynamics. Furthermore, we compared distribution of residence time in each spiking pattern between cases with/without large EPSPs. The results show that strong synapses are crucial in the heavy-tailed distribution of residence time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)
Battaglia, F.P., Sutherland, G.R., Cowen, S.L., Mc Naughton, B.L., Harris, K.D.: Firing rate modulation: a simple statistical view of memory trace reactivation. Neural Netw. 18(9), 1280–1291 (2005)
Blake, R., Logothetis, N.K.: Visual competition. Nat. Rev. Neurosci. 3(1), 13 (2002)
Borsellino, A., De Marco, A., Allazetta, A., Rinesi, S., Bartolini, B.: Reversal time distribution in the perception of visual ambiguous stimuli. Kybernetik 10(3), 139–144 (1972)
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)
Buzsáki, G., Mizuseki, K.: The log-dynamic brain: how skewed distributions affect network operations. Nat. Rev. Neurosci. 15(4), 264–278 (2014)
Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89(6), 068102 (2002)
Eguiluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V.: Scale-free brain functional networks. Phys. Rev. Lett. 94(1), 018102 (2005)
Fell, J., Kaplan, A., Darkhovsky, B., Röschke, J.: EEG analysis with nonlinear deterministic and stochastic methods: a combined strategy. Acta Neurobiol. Exp. 60(1), 87–108 (1999)
Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)
Glasser, M.F., et al.: The human connectome project’s neuroimaging approach. Nat. Neurosci. 19(9), 1175–1187 (2016)
Hagmann, P., et al.: Mapping the structural core of human cerebral cortex. PLoS Biol. 6(7), e159 (2008)
Hagmann, P., et al.: Mapping human whole-brain structural networks with diffusion MRI. PloS One 2(7), e597 (2007)
van den Heuvel, M., Mandl, R., Luigjes, J., Pol, H.H.: Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 28(43), 10844–10851 (2008)
van den Heuvel, M.P., Sporns, O.: Network hubs in the human brain. Trends Cogn. Sci. 17(12), 683–696 (2013)
Hirase, H., Leinekugel, X., Czurkó, A., Csicsvari, J., Buzsáki, G.: Firing rates of hippocampal neurons are preserved during subsequent sleep episodes and modified by novel awake experience. Proc. Natl. Acad. Sci. 98(16), 9386–9390 (2001)
Hromádka, T., DeWeese, M.R., Zador, A.M.: Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6(1), e16 (2008)
Kanamaru, T.: Chaotic pattern alternations can reproduce properties of dominance durations in multistable perception. Neural Comput. 29(6), 1696–1720 (2017)
Lefort, S., Tomm, C., Sarria, J.C.F., Petersen, C.C.: The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61(2), 301–316 (2009)
Lehky, S.R.: Binocular rivalry is not chaotic. Proc. R. Soc. Lond. B 259(1354), 71–76 (1995)
Levelt, W.J.: Note on the distribution of dominance times in binocular rivalry. Br. J. Psychol. 58(1–2), 143–145 (1967)
Mizuseki, K., Buzsáki, G.: Preconfigured, skewed distribution of firing rates in the hippocampus and entorhinal cortex. Cell Rep. 4(5), 1010–1021 (2013)
Mizuseki, K., Buzsaki, G.: Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex. Phil. Trans. R. Soc. B 369(1635), 20120530 (2014)
Nagao, N., Nishimura, H., Matsui, N.: A neural chaos model of multistable perception. Neural Process. Lett. 12(3), 267–276 (2000)
O’Connor, D.H., Peron, S.P., Huber, D., Svoboda, K.: Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron 67(6), 1048–1061 (2010)
Peyrache, A., et al.: Spatiotemporal dynamics of neocortical excitation and inhibition during human sleep. Proc. Natl. Acad. Sci. 109(5), 1731–1736 (2012)
Schreiber, T., Schmitz, A.: Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635 (1996)
Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., Bodner, M.: Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience 146(3), 1082–1108 (2007)
She, Q., Chen, G., Chan, R.H.: Evaluating the small-world-ness of a sampled network: functional connectivity of entorhinal-hippocampal circuitry. Sci. Rep. 6, 21468 (2016)
Song, S., Sjöström, P.J., Reigl, M., Nelson, S., Chklovskii, D.B.: Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3(3), e68 (2005)
Sporns, O.: Contributions and challenges for network models in cognitive neuroscience. Nat. Neurosci. 17(5), 652–660 (2014)
Teramae, J.N., Tsubo, Y., Fukai, T.: Optimal spike-based communication in excitable networks with strong-sparse and weak-dense links. Sci. Rep. 2, 485 (2012)
Walker, P.: Stochastic properties of binocular rivalry alternations. Percept. Psychophys. 18(6), 467–473 (1975)
Acknowledgment
This work was supported by JSPS KAKENHI for Early-Career Scientists (grant number: 18K18124).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Nobukawa, S., Nishimura, H., Yamanishi, T. (2018). Skewed and Long-Tailed Distributions of Spiking Activity in Coupled Network Modules with Log-Normal Synaptic Weight Distribution. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11301. Springer, Cham. https://doi.org/10.1007/978-3-030-04167-0_48
Download citation
DOI: https://doi.org/10.1007/978-3-030-04167-0_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04166-3
Online ISBN: 978-3-030-04167-0
eBook Packages: Computer ScienceComputer Science (R0)