[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Synchronization and oscillation behaviors of excitatory and inhibitory populations with spike-timing-dependent plasticity

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

The effect of synaptic plasticity on the synchronization mechanism of the cerebral cortex has been a hot research topic over the past two decades. There are a great deal of literatures on excitatory pyramidal neurons, but the mechanism of interaction between the inhibitory interneurons is still under exploration. In this study, we consider a complex network consisting of excitatory (E) pyramidal neurons and inhibitory (I) interneurons interacting with chemical synapses through spike-timing-dependent plasticity (STDP). To study the effects of eSTDP and iSTDP on synchronization and oscillation behaviors emerged in an excitatory–inhibitory balanced network, we analyzed three different cases, a small-world network of purely excitatory neurons with eSTDP, a small-world network of purely inhibitory neurons with iSTDP and a small-world network with excitatory–inhibitory balanced neurons. By varying the number of inhibitory interneurons, and that of connected edges in a small-world network, and the coupling strength, these networks exhibit different synchronization and oscillation behaviors. We found that the eSTDP facilitates synchronization effectively, while iSTDP has no significant impact on it. In addition, eSTDP and iSTDP restrict the balance of the excitatory–inhibitory balanced neuronal network together and play a fundamental role in maintaining network stability and synchronization. They also can be used to guide the treatment and further research of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alina P, Johannes SB, Katharine S, Kleopatra K, Tapani SJ, Liane K, Johanna K-L, Robert DJ, Louise SM, Martin V et al (2021) Stimulus-specific plasticity of macaque v1 spike rates and gamma. Cell Rep 37(10):110086

    Article  Google Scholar 

  • Antonio PSJ, Ricardo PP, Luiz VR, Marcos BA (2021) Effects of burst-timing-dependent plasticity on synchronous behaviour in neuronal network. Neurocomputing 436:126–135

    Article  Google Scholar 

  • Batista CAS, Lopes SR, Viana Ricardo L, Batista Antonio M (2010) Delayed feedback control of bursting synchronization in a scale-free neuronal network. Neural Netw 23(1):114–124

    Article  CAS  PubMed  Google Scholar 

  • Brunel N, Wang X-J (2003) What determines the frequency of fast network oscillations with irregular neural discharges? i. synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90(1):415–430

    Article  PubMed  Google Scholar 

  • Börgers C (2017) An introduction to modeling neuronal dynamics. Texts Appl Math 66

  • Brunet Nicolas M, Bosman Conrado A, Martin V, Mark R, Robert O, Robert D, Peter DW, Pascal F (2014) Stimulus repetition modulates gamma-band synchronization in primate visual cortex. Proc Natl Acad Sci 111(9):3626–3631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chariker L, Shapley R, Young L-S (2016) Orientation selectivity from very sparse lgn inputs in a comprehensive model of macaque v1 cortex. J Neurosci 36(49):12368–12384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chariker L, Shapley R, Young L-S (2018) Rhythm and synchrony in a cortical network model. J Neurosci 38(40):8621–8634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chialvo DR (2010) Emergent complex neural dynamics

  • Cian MC, François D, Marcello V, Lőrincz Magor L, Francis D, Zoe A, Gregorio R, Gergely O, Lambert Régis C, Giuseppe DG et al (2018) Cortical drive and thalamic feed-forward inhibition control thalamic output synchrony during absence seizures. Nat Neurosci 21(5):744–756

    Article  Google Scholar 

  • Clawson Wesley P, Wright Nathaniel C, Ralf W, Shew Woodrow L (2017) Adaptation towards scale-free dynamics improves cortical stimulus discrimination at the cost of reduced detection. Plos Comput Biol 13(5):e1005574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amour JA, Froemke RC (2015) Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 86(2):514–528

  • Field RE, D’Amour JA, Tremblay R, Miehl C, Froemke RC (2020) Heterosynaptic plasticity determines the set point for cortical excitatory-inhibitory balance. Neuron 106(5):842–854

  • Frotscher M, Sakmann B, Markram H, Lübke J (1997) Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science 275:213–215

  • Galati S, Scarnati E, Mazzone P, Stanzione P, Stefani A (2008) Deep brain stimulation promotes excitation and inhibition in subthalamic nucleus in Parkinson’s disease. NeuroReport 19(6):661–666

    Article  PubMed  Google Scholar 

  • Gautam Shree Hari, Hoang Thanh T, Mcclanahan Kylie, Grady Stephen K, Shew Woodrow L (2015) Maximizing sensory dynamic range by tuning the cortical state to criticality. PLOS Comput Biol 11(12):e1004576.

  • Gyrgy B, Jing WX (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35(1):203–225

    Article  Google Scholar 

  • Haas JS, Nowotny T, Hdi A (2006) Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J Neurophysiol 96(6):3305–3313

    Article  PubMed  Google Scholar 

  • Han C, Wang T, Yang Y, Yujie W, Li Y, Dai W, Zhang Y, Wang B, Yang G, Cao Z et al (2021) Multiple gamma rhythms carry distinct spatial frequency information in primary visual cortex. PLoS Biol 19(12):e3001466

  • Han C, Wang T, Wu Y, Li Y, Yang Y, Li L, Wang Y, Xing D (2021) The generation and modulation of distinct gamma oscillations with local, horizontal, and feedback connections in the primary visual cortex: a model study on large-scale networks. Neural Plasticity 2021:8875516

  • Han C, Shapley R, Xing D (2021) Gamma rhythms in the visual cortex: functions and mechanisms. Cogn Neurodyn 16:1–12

    Google Scholar 

  • Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New York

    Google Scholar 

  • Hunt David L, Daniele L, Bailu S, Sandro R, Nelson S (2018) A novel pyramidal cell type promotes sharp-wave synchronization in the hippocampus. Nat Neurosci 21(7):985–995

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2007). Dynamical systems in neuroscience. MIT press

  • Izhikevich Eugene M (2003) Simple model of spiking neurons. IEEE Trans Neural Netw 14(6):1569–1572

    Article  Google Scholar 

  • Izhikevich Eugene M (2004) Which model to use for cortical spiking neurons? IEEE Trans Neural Netw 15(5):1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Kesheng X, Paul MJ, Patricio O (2021) Diversity of neuronal activity is provided by hybrid synapses. Nonlinear Dyn 105(3):2693–2710

    Article  Google Scholar 

  • Khoshkhou M, Montakhab A (2018) Beta-rhythm oscillations and synchronization transition in network models of Izhikevich neurons: effect of topology and synaptic type. Front Comput Neurosci 12:59

    Article  PubMed  PubMed Central  Google Scholar 

  • Khoshkhou M, Montakhab A (2019) Spike-timing-dependent plasticity with axonal delay tunes networks of izhikevich neurons to the edge of synchronization transition with scale-free avalanches. Front Syst Neurosci, 13:73.

  • Khoshkhou M, Montakhab A (2020) Explosive, continuous and frustrated synchronization transition in spiking hodgkin-huxley neural networks: The role of topology and synaptic interaction. Physica D 405:132399

    Article  Google Scholar 

  • Kim S-Y, Lim W (2015) Effect of small-world connectivity on fast sparsely synchronized cortical rhythms. Physica A 421:109–123

    Article  Google Scholar 

  • Kim S-Y, Lim W (2018) Effect of spike-timing-dependent plasticity on stochastic burst synchronization in a scale-free neuronal network. Cogn Neurodyn 12(3):315–342

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim S-Y, Lim W (2019) Burst synchronization in a scale-free neuronal network with inhibitory spike-timing-dependent plasticity. Cogn Neurodyn 13(1):53–73

    Article  PubMed  Google Scholar 

  • Kim SY, Lim W (2020) Effect of interpopulation spike-timing-dependent plasticity on synchronized rhythms in neuronal networks with inhibitory and excitatory populations, Springer, Netherlands.14:535–567

  • Kim S-Y, Lim W (2021) Effect of diverse recoding of granule cells on optokinetic response in a cerebellar ring network with synaptic plasticity. Neural Netw 134:173–204

    Article  PubMed  Google Scholar 

  • Kuramoto Y (1975) International symposium on mathematical problems in theoretical physics. Lect Notes Phys 39:420–422

    Article  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Book  Google Scholar 

  • Lameu EL, Macau EEN, Borges FS, Iarosz KC, Caldas IL, Borges RR, Protachevicz PR, Viana RL, Batista AM (2018) Alterations in brain connectivity due to plasticity and synaptic delay. Eur Phys J Special Top 227(5):673–682

    Article  Google Scholar 

  • Liliia Z, Shchur Lev N (2018) Synchronization of conservative parallel discrete event simulations on a small-world network. Phys Rev E 98(2):022218

    Article  Google Scholar 

  • Markram H, Gerstner W, Sjöström PJ (2012) Spike-timing-dependent plasticity: a comprehensive overview. Front Syn Neurosci 4:2

    CAS  Google Scholar 

  • Mojtaba MA, Alireza V, Tass Peter A (2017) Dendritic and axonal propagation delays determine emergent structures of neuronal networks with plastic synapses. Sci Rep 7(1):1–12

    Google Scholar 

  • Nambu A (2005) A new approach to understand the pathophysiology of parkinson’s disease. J Neurol 252(4): iv1–iv4

  • Oswal A, Cao C, Yeh C-H, Neumann W-J, Gratwicke J, Akram H, Horn A, Li D, Zhan S, Zhang C et al (2021) Neural signatures of hyperdirect pathway activity in Parkinson’s disease. Nat Commun 12(1):1–14

    Article  Google Scholar 

  • Pikovsky MRA, Osipov G (1997) Phase synchronization of chaotic oscillators by external driving. Physica D 104:219–238

    Article  Google Scholar 

  • Plenz D (2014) Criticality in neural systems. Wiley-VCH

  • Qiang BG, Ming PM (1998) Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18(24):10464–10472

    Article  Google Scholar 

  • Qiang BG, Ming PM (2001) Synaptic modification by correlated activity: Hebb’s postulate revisited. Annu Rev Neurosci 24(24):139–166

    Google Scholar 

  • Rich S, Zochowski M, Booth V (2018) Effects of neuromodulation on excitatory-inhibitory neural network dynamics depend on network connectivity structure. J Nonlinear Sci 8:1–24

    Google Scholar 

  • Roth A, Van Rossum Mark CW (2009) Modeling synapses. Comput Model Methods Neurosci, 139–159

  • Santos MS, Protachevicz PR, Iarosz KC, Caldas IL, Viana RL, Borges FS, Ren HP, Szezech Jr JD, Batista AM, Grebogi C (2019) Spike-burst chimera states in an adaptive exponential integrate-and-fire neuronal network. Chaos Interdisciplin J Nonlinear Sci 29(4):043106

  • Saraf S, Young L-S (2021) Malleability of gamma rhythms enhances population-level correlations. J Comput Neurosci 49(2):189–205

    Article  PubMed  Google Scholar 

  • Schwab BC, Heida T, Zhao Y, Marani E, Gils SA van, Van Wezel Richard JA (2013) Synchrony in parkinson’s disease: importance of intrinsic properties of the external globus pallidus. Front Syst Neurosci 7:60

  • Sen S, Miller Kenneth D, Abbott LF (2000) Competitive hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3(9):919–26

    Article  Google Scholar 

  • Shi X, Du D, Wang Y (2021) Interaction of indirect and hyperdirect pathways on synchrony and tremor-related oscillation in the basal ganglia. Neural Plasticity.2021:1–16

  • Sjöström J, Gerstner W (2010) Spike-timing dependent plasticity. NeuroReport 5(2):1362

    Google Scholar 

  • Stauch BJ, Peter A, Schuler H, Fries P (2021) Stimulus-specific plasticity in human visual gamma-band activity and functional connectivity. Elife 10:e68240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Yang X (2010) Parameters identification and synchronization of chaotic delayed systems containing uncertainties and time-varying delay. Math Problems Eng:105309

  • Sun X, Liu Z, Perc M (2019) Effects of coupling strength and network topology on signal detection in small-world neuronal networks. Nonlinear Dyn 96(3):2145–2155

    Article  Google Scholar 

  • Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4(1):37–48

    Article  CAS  PubMed  Google Scholar 

  • Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2011) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science. 334(6062):1569–73.

  • Wang X-J (2020) Macroscopic gradients of synaptic excitation and inhibition in the neocortex. Nat Rev Neurosci 21(3):169–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Trevelyan AJ, Valentin A, Alarcon G, Taylor PN, Kaiser M (2017) Mechanisms underlying different onset patterns of focal seizures. PLoS Comput Biol 13(5):e1005475

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Shi X, Cheng B, Chen J (2020) Synchronization and rhythm transition in a complex neuronal network. IEEE Access, 8:102436–102448

    Article  Google Scholar 

  • Wang Xiao-Jing H, Hailan HC, Henry K, Tony LC, Logothetis Nikos L, Zhong-Lin LQ, Mu-ming P, Doris T et al (2020) Computational neuroscience: a frontier of the 21st century. Natl Sci Rev 7(9):1418–1422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393(6684):440–442

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Gong Y, Wang Q (2016) Effect of spike-timing-dependent plasticity on coherence resonance and synchronization transitions by time delay in adaptive neuronal networks. Eur Phys J B 89(7):1–7

    Article  Google Scholar 

  • Xing D, Shen Y, Burns S, Yeh C-I, Shapley R, Li W (2012) Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys. J Neurosci 32(40):13873–13880a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Yi M, Hou D (2019) Delay-induced synchronization transition in a small-world neuronal network of fitzhugh-nagumo neurons subjected to sine-wiener bounded noise. Int J Modern Phys B 1950053

  • Yoon KS, Woochang L (2018) Stochastic spike synchronization in a small-world neural network with spike-timing-dependent plasticity. Neural Netw 97(2017):92–106

    Google Scholar 

  • Zhang X, Liu S (2019) Nonlinear delayed feedback control of synchronization in an excitatory-inhibitory coupled neuronal network. Nonlinear Dyn 96(4):2509–2522

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 11772069), the National Key Research and Development Program of China (No. 2018YFB1003804) and the National Key Research and Development Program (2019YFA0 709503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Shi, X., Si, B. et al. Synchronization and oscillation behaviors of excitatory and inhibitory populations with spike-timing-dependent plasticity. Cogn Neurodyn 17, 715–727 (2023). https://doi.org/10.1007/s11571-022-09840-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-022-09840-z

Keywords