[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Estimating the Temporal Evolution of Synaptic Weights from Dynamic Functional Connectivity

  • Conference paper
  • First Online:
Brain Informatics (BI 2022)

Abstract

How to capture the temporal evolution of synaptic weights from measures of dynamic functional connectivity (DFC) between the activity of different simultaneously recorded neurons is an important and open problem in systems neuroscience. To address this issue, we first simulated models of recurrent neural networks of spiking neurons that had a spike-timing-dependent plasticity mechanism generating time-varying synaptic and functional coupling. We then used these simulations to test analytical approaches that relate dynamic functional connectivity to time-varying synaptic connectivity. We investigated how to use different measures of directed DFC, such as cross-covariance and transfer entropy, to build algorithms that infer how synaptic weights evolve over time. We found that, while both cross-covariance and transfer entropy provide robust estimates of structural connectivity and communication delays, cross-covariance better captures the evolution of synaptic weights over time. We also established how leveraging estimates of connectivity derived from entire simulated recordings could further boost the estimation of time-varying synaptic weights from the DFC. These results provide useful information to estimate accurately time variations of synaptic strength from spiking activity measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 51.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 64.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Besserve, M., Lowe, S.C., Logothetis, N.K., Schölkopf, B., Panzeri, S.: Shifts of gamma phase across primary visual cortical sites reflect dynamic stimulus-modulated information transfer. PLoS Biol. 13(9), e1002257 (2015)

    Article  Google Scholar 

  2. Citri, A., Malenka, R.C.: Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1), 18–41 (2007)

    Article  Google Scholar 

  3. Cutts, C.S., Eglen, S.J.: Detecting pairwise correlations in spike trains: an objective comparison of methods and application to the study of retinal waves. J. Neurosci. 34(43), 14288–14303 (2014)

    Article  Google Scholar 

  4. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning - ICML 2006, pp. 233–240 (2006)

    Google Scholar 

  5. Francis, N.A., Mukherjee, S., Koçillari, L., Panzeri, S., Babadi, B., Kanold, P.O.: Sequential transmission of task-relevant information in cortical neuronal networks. Cell Rep. 39(9), 110878 (2022)

    Article  Google Scholar 

  6. Ganguli, S., Sompolinsky, H.: Compressed sensing, sparsity, and dimensionality in neuronal information processing and data analysis. Ann. Rev. Neurosci. 35(1), 485–508 (2012)

    Article  Google Scholar 

  7. Hindriks, R., et al.: Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127, 242–256 (2016)

    Article  Google Scholar 

  8. Hlavackovaschindler, K., Palus, M., Vejmelka, M., Bhattacharya, J.: Causality detection based on information-theoretic approaches in time series analysis. Phys. Rep. 441(1), 1–46 (2007)

    Article  Google Scholar 

  9. Ito, S., Hansen, M.E., Heiland, R., Lumsdaine, A., Litke, A.M., Beggs, J.M.: Extending transfer entropy improves identification of effective connectivity in a spiking cortical network model. PLoS ONE 6(11), e27431 (2011)

    Article  Google Scholar 

  10. Izhikevich, E.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14(6), 1569–1572 (2003)

    Article  MathSciNet  Google Scholar 

  11. Izhikevich, E.: Polychronization: computation with spikes. Neural Comput. 18(2), 245–282 (2006)

    Article  MathSciNet  Google Scholar 

  12. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)

    Article  MathSciNet  Google Scholar 

  13. Kobayashi, R., et al.: Reconstructing neuronal circuitry from parallel spike trains. Nat. Commun. 10(1), 4468 (2019)

    Article  Google Scholar 

  14. Lemke, S.M., Ramanathan, D.S., Darevksy, D., Egert, D., Berke, J.D., Ganguly, K.: Coupling between motor cortex and striatum increases during sleep over long-term skill learning. eLife 10, e64303 (2021)

    Google Scholar 

  15. Mastrogiuseppe, F., Ostojic, S.: Linking connectivity, dynamics, and computations in low-rank recurrent neural networks. Neuron 99(3), 609–623 (2018)

    Article  Google Scholar 

  16. Ostojic, S., Brunel, N., Hakim, V.: How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. J. Neurosci. 29(33), 10234–10253 (2009)

    Article  Google Scholar 

  17. Pan, S., Mayoral, S.R., Choi, H.S., Chan, J.R., Kheirbek, M.A.: Preservation of a remote fear memory requires new myelin formation. Nat. Neurosci. 23(4), 487–499 (2020)

    Article  Google Scholar 

  18. Pastore, V.P., Massobrio, P., Godjoski, A., Martinoia, S.: Identification of excitatory-inhibitory links and network topology in large-scale neuronal assemblies from multi-electrode recordings. PLoS Comput. Biol. 14(8), e1006381 (2018)

    Article  Google Scholar 

  19. Satterthwaite, T.D., et al.: An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013)

    Article  Google Scholar 

  20. Schneidman, E., Berry, M.J., Segev, R., Bialek, W.: Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440(7087), 1007–1012 (2006)

    Article  Google Scholar 

  21. Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85(2), 461–464 (2000)

    Article  Google Scholar 

  22. Sheikhattar, A., et al.: Extracting neuronal functional network dynamics via adaptive Granger causality analysis. Proc. Natl. Acad. Sci. U.S.A. 115(17), E3869–E3878 (2018)

    Article  MathSciNet  Google Scholar 

  23. Tononi, G., Cirelli, C.: Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1), 12–34 (2014)

    Article  Google Scholar 

  24. Wibral, M., et al.: Measuring information-transfer delays. PLoS ONE 8(2), e55809 (2013)

    Article  Google Scholar 

  25. Yang, G., Lai, C.S.W., Cichon, J., Ma, L., Li, W., Gan, W.B.: Sleep promotes branch-specific formation of dendritic spines after learning. Science 344(6188), 1173–1178 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Celotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Celotto, M., Lemke, S., Panzeri, S. (2022). Estimating the Temporal Evolution of Synaptic Weights from Dynamic Functional Connectivity. In: Mahmud, M., He, J., Vassanelli, S., van Zundert, A., Zhong, N. (eds) Brain Informatics. BI 2022. Lecture Notes in Computer Science(), vol 13406. Springer, Cham. https://doi.org/10.1007/978-3-031-15037-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15037-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15036-4

  • Online ISBN: 978-3-031-15037-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics