[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Cayley-Dixon Resultant Matrices of Multi-univariate Composed Polynomials

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3718))

Included in the following conference series:

Abstract

The behavior of the Cayley-Dixon resultant construction and the structure of Dixon matrices are analyzed for composed polynomial systems constructed from a multivariate system in which each variable is substituted by a univariate polynomial in a distinct variable. It is shown that a Dixon projection operator (a multiple of the resultant) of the composed system can be expressed as a power of the resultant of the outer polynomial system multiplied by powers of the leading coefficients of the univariate polynomials substituted for variables in the outer system. The derivation of the resultant formula for the composed system unifies all the known related results in the literature. A new resultant formula is derived for systems where it is known that the Cayley-Dixon construction does not contain any extraneous factors. The approach demonstrates that the resultant of a composed system can be effectively calculated by considering only the resultant of the outer system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sederberg, T., Goldman, R.: Algebraic geometry for computer-aided design. IEEE Computer Graphics and Applications 6, 52–59 (1986)

    Article  Google Scholar 

  2. Hoffman, C.: Geometric and Solid modeling. Morgan Kaufmann Publishers, Inc., San Mateo (1989)

    Google Scholar 

  3. Morgan, A.: Solving polynomial systems using continuation for Scientific and Engineering problems. Prentice-Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  4. Chionh, E.: Base points, resultants, and the implicit representation of rational Surfaces. PhD dissertation, Univ. of Waterloo, Dept. of Computer Science (1990)

    Google Scholar 

  5. Zhang, M.: Topics in Resultants and Implicitization. PhD thesis, Rice University, Dept. of Computer Science (2000)

    Google Scholar 

  6. Bajaj, C., Garrity, T., Warren, J.: On the application of multi-equational resultants. Technical Report CSD-TR-826, Dept. of Computer Science, Purdue (1988)

    Google Scholar 

  7. Ponce, J., Kriegman, D.: Elimination Theory and Computer Vision: Recognition and Positioning of Curved 3D Objects from Range. In: Donald, K., Mundy (eds.) Symbolic and Numerical Computation for AI. Academic Press, London (1992)

    Google Scholar 

  8. Kapur, D., Saxena, T., Yang, L.: Algebraic and geometric reasoning using the Dixon resultants. In: ACM ISSAC 1994, Oxford, England, pp. 99–107 (1994)

    Google Scholar 

  9. Rubio, R.: Unirational Fields. Theorems, Algorithms and Applications. PhD thesis, University of Cantabria, Santander, Spain (2000)

    Google Scholar 

  10. Cheng, C.C., McKay, J.H., Wang, S.S.: A chain rule for multivariable resultants. Proceedings of the American Mathematical Society 123, 1037–1047 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jouanolou, J.P.: Le formalisme du résultant. Adv. Math. 90, 117–263 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Minimair, M.: Factoring resultants of linearly combined polynomials. In: Sendra, J.R. (ed.) Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 207–214. ACM, New York (2003); ISSAC 2003, Philadelphia, PA, USA (August 3-6 2003)

    Chapter  Google Scholar 

  13. Minimair, M.: Computing resultants of partially composed polynomials. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Computing. Proceedings of the CASC 2004, St. Petersburg, Russia, pp. 359–366. TUM München (2004)

    Google Scholar 

  14. Hong, H., Minimair, M.: Sparse resultant of composed polynomials I. J. Symbolic Computation 33, 447–465 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Buse, L., Elkadi, M., Mourrain, B.: Generalized resultants over unirational algebraic varieties. J. Symbolic Computation 29, 515–526 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kapur, D., Saxena, T.: Comparison of various multivariate resultants. In: ACM ISSAC 1995, Montreal, Canada (1995)

    Google Scholar 

  17. Hong, H.: Subresultants under composition. J. Symb. Comp. 23, 355–365 (1997)

    Article  MATH  Google Scholar 

  18. Kapur, D., Saxena, T.: Extraneous factors in the Dixon resultant formulation. In: ISSAC, Maui, Hawaii, USA, pp. 141–147 (1997)

    Google Scholar 

  19. McKay, J.H., Wang, S.S.: A chain rule for the resultant of two polynomials. Arch. Math. 53, 347–351 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, M., Goldman, R.: Rectangular corner cutting and sylvester \(\mathcal{A}\)-resultants. In: Proc. of the ISSAC, St. Andrews, Scotland

    Google Scholar 

  21. Chtcherba, A.D.: A new Sylvester-type Resultant Method based on the Dixon-Bézout Formulation. PhD dissertation, University of New Mexico, Department of Computer Science (2003)

    Google Scholar 

  22. Dixon, A.: The eliminant of three quantics in two independent variables. Proc. London Mathematical Society 6, 468–478 (1908)

    Article  Google Scholar 

  23. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry, 1st edn. Springer, New York (1998)

    MATH  Google Scholar 

  24. Chtcherba, A.D., Kapur, D., Minimair, M.: Cayley-dixon construction of resultants of multi-univariate composed polynomials. Technical Report TR-CS-2005-15, Dept. of Computer Science, University of New Mexico (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chtcherba, A.D., Kapur, D., Minimair, M. (2005). Cayley-Dixon Resultant Matrices of Multi-univariate Composed Polynomials. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2005. Lecture Notes in Computer Science, vol 3718. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11555964_11

Download citation

  • DOI: https://doi.org/10.1007/11555964_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28966-1

  • Online ISBN: 978-3-540-32070-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics