Abstract
This paper deals with the theory of d-orthogonal polynomials and it aims to find out some sufficient conditions for the zeros of the above polynomials to be real and distinct using Darboux factorization together with the properties of totally positive matrices. We shall show that such condition exists and it requires the recurrence coefficients to be strictly positive. The so-called co-polynomials are deeply investigated and they are explicitly expressed in terms of the basic solutions. Some of them are used to determine the entries of the matrices in \({\text {LU}}\) and \({\text {UL}}\) decomposition of Hessenberg matrix. Moreover, some Casorati determinants with co-polynomials entries are considered.
Similar content being viewed by others
References
Al-Salam, W.A.: On a characterization of orthogonality. Math. Mag. 1, 41–44 (1957)
Al-Salam, W.A.: \(q\)-Appell polynomials. Ann. Mat. Pura Appl. 77(4), 31–45 (1967)
Barrios, D., Manrique, D.: On the existence of Darboux transformations for banded matrices. Appl. Math. Comput. 253, 116–125 (2015)
Belmehdi, S.: On the associated orthogonal polynomials. J. Comput. Appl. Math. 32, 311–319 (1990)
Ben Cheikh, Y., Douak, K.: A generalized hypergeometric \(d\)-orthogonal polynomial set. C. R. Acad. Sci. Paris 331, 349–354 (2000)
Ben Cheikh, Y., Gaied, M.: Dunkl–Appell \(d\)-orthogonal polynomials,. Integr. Transfroms Spec. Funct. 18, 581–597 (2007)
Ben Cheikh, Y., Zeghouani, A.: Some discrete \(d\)-orthogonal polynomial sets. J. Comput. Appl. Math. 156, 2–22 (2003)
Bueno, M.I., Marcellán, F.: Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 384, 215–242 (2004)
Chaggara, H., Ben Romdhane, N.: On the zeros of the hyper-Bessel function. Integr. Transforms Spec. Funct. 26, 96–101 (2015)
Chihara, T.S.: On co-recursive orthogonal polynomials. Proc. Am. Math. Soc. 8, 899–905 (1957)
Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)
Coussement, E., Coussement, J., Van Assche, W.: Asymptotic zero distribution for a class of multiple orthogonal polynomials. Trans. Am. Math. Soc. 360, 5571–5588 (2008)
de Bruin, M.G.: Classical convergence theorems for generalized continued fraction. Numer. Algorithms 44, 367–380 (2007)
Dickinson, D.: On certain polynomials associated with orthogonal polynomials. Boll. Un. Mat. Ital. 13, 116–124 (1958)
Dini, J., Maroni, P., Ronveaux, A.: Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux. Port. Math. 46, 269–282 (1989)
Douak, K.: The relation of the \(d\)-orthogonal polynomials to the Appell polynomials. J. Comput. Appl. Math. 70, 279–295 (1996)
Eiermann, H., Varga, R.S.: Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains. Electron. Trans. Numer. Anal. 1, 49–71 (1993)
Evans, W.D., Littlejohn, L.L., Marcellán, F., Markett, C., Ronveaux, A.: On recurrence relations for Sobolev orthogonal polynomials. SIAM J. Math. Anal. 26(2), 446–467 (1995)
Foupouagnigni, M., Koepf, W., Ronveaux, A.: On forth-order difference equations for orthogonal polynomials of discrete variable: derivation, factorization and solutions. J. Diff. Eqn. Appl. 9, 777–804 (2003)
Foupouagnigni, M., Koepf, W., Ronveaux, A.: Factorization of fourth-order differential equations for perturbed classical orthogonal polynomials. J. Comput. Appl. Math. 162, 299–326 (2004)
Gantmakher, F., Krein, M.: Sur les matrices complètement non négatives et oscillatoires. Compositio Math. 4, 445–476 (1937)
Garza, L.E., Marcellán, F.: Orthogonal polynomials and perturbations on measures supported on the real line and on the unit circle. A matrix perspective. Expo. Math. 34, 287–326 (2016)
Grosjean, C.C.: Theory of recursive generation of systems of orthogonal polynomials: an illustrative example. J. Comput. Appl. Math. 12(13), 299–318 (1985)
Grosjean, C.C.: The weight functions, generating functions and miscellaneous properties of the sequences of orthogonal polynomials of the second kind associated with the Jacobi and the Gegenbauer polynomials. J. Comput. Appl. Math. 16(3), 259–307 (1986)
Hou, Q.-H., Mu, Y.-P.: Recurent sequences and Schur functions. Adv. Appl. Math. 31, 150–162 (2003)
Kalyagin, V.A.: Hermite-Padé and spectral analysis of nonsymmetric operators. Mat. Sb. 185, 79–100 (1994)
Marcellán, F., Dehesa, J.S., Ronveaux, A.: On orthogonal polynomials with perturbed recurrence relations. J. Comput. Appl. Math. 30, 203–212 (1990)
Marcellán, F., Saib, A.: Linear combinations of \(d\)-orthogonal polynomials. Bull. Malays. Math. Sci. Soc. 42, 2009–2038 (2019)
Maroni, P.: Une généralisation du théorème de Favard-Shohat sur les polynômes orthogonaux,. C. R. Acad. Sci. Paris 293, 19–22 (1981)
Maroni, P.: L’orthogonalité et les récurrences de polynômes d’ordre supérieur à deux. Ann. Fac. Sci. Toulouse 10, 105–139 (1989)
Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In Orthogonal polynomials and their Applications; C. Brezinski et al., Eds.; IMACS Ann. Comput. Appl. Math. 9: Baltzer, Basel, pp. 95–130 (1991)
Maroni, P.: Two-dimentional orthogonal polynomials, their associated sets and co-recursive sets. Numer. Algorithms 3, 299–312 (1992)
Maroni, P.: An introduction to second degree forms. Adv. Comput. Math. 3, 59–83 (1995)
Pinkus, A.: Totally Positive Matrices. Cambridge University Press, Cambridge (2010)
Ronveaux, A., Belmehdi, S., Dini, J., Maroni, P.: Fourth-order differential equation for the co-modified of semi-classical orthgononal polynomials. J. Comput. Appl. Math. 29, 225–231 (1990)
Ronveaux, A., Van Assche, W.: Upward extension of the Jacobi matrix for orthogonal polynomials. J. Approx. Theory 86, 335–357 (1996)
Saib, A., Zerouki, E.: On associated and co-recursive \(d\)-orthogonal polynomials. Math. Slovaca 63, 1037–1052 (2013)
Saib, A., Zerouki, E.: Some inverse problems for \(d\)-orthogonal polynomials. Mediterr. J. Math. 10, 865–885 (2013)
Slim, H.A.: On co-recursive orthogonal polynomials and their application to potential scattering. J. Math. Anal. Appl. 136, 1–19 (1988)
Stieltjes, T.J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8, J1–J122 (1894)
Stieltjes, T.J.: Recherches sur les fractions continues. Ann. Fac Sci. Toulouse 9, A1-47 (1895)
Valent, G., Van Assche, W.: The impact of Stieltjes’ work on continued fractions and orthogonal polynomials: additional material. J. Comput. Appl. Math. 65, 419–447 (1995)
Van Assche, W.: Orthogonal polynomials, associated polynomials and functions of the second kind. J. Comput. Appl. Math. 37, 237–249 (1991)
Acknowledgements
I thank the referee of this paper for his/her useful comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of interest
The authors have no relevant financial or non-financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Saib, A. On Co-polynomials and d-Orthogonality. La Matematica 3, 45–78 (2024). https://doi.org/10.1007/s44007-023-00076-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s44007-023-00076-9