[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Co-polynomials and d-Orthogonality

  • Original Research Article
  • Published:
La Matematica Aims and scope Submit manuscript

Abstract

This paper deals with the theory of d-orthogonal polynomials and it aims to find out some sufficient conditions for the zeros of the above polynomials to be real and distinct using Darboux factorization together with the properties of totally positive matrices. We shall show that such condition exists and it requires the recurrence coefficients to be strictly positive. The so-called co-polynomials are deeply investigated and they are explicitly expressed in terms of the basic solutions. Some of them are used to determine the entries of the matrices in \({\text {LU}}\) and \({\text {UL}}\) decomposition of Hessenberg matrix. Moreover, some Casorati determinants with co-polynomials entries are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Salam, W.A.: On a characterization of orthogonality. Math. Mag. 1, 41–44 (1957)

    MathSciNet  Google Scholar 

  2. Al-Salam, W.A.: \(q\)-Appell polynomials. Ann. Mat. Pura Appl. 77(4), 31–45 (1967)

    MathSciNet  Google Scholar 

  3. Barrios, D., Manrique, D.: On the existence of Darboux transformations for banded matrices. Appl. Math. Comput. 253, 116–125 (2015)

    MathSciNet  Google Scholar 

  4. Belmehdi, S.: On the associated orthogonal polynomials. J. Comput. Appl. Math. 32, 311–319 (1990)

    MathSciNet  Google Scholar 

  5. Ben Cheikh, Y., Douak, K.: A generalized hypergeometric \(d\)-orthogonal polynomial set. C. R. Acad. Sci. Paris 331, 349–354 (2000)

    MathSciNet  Google Scholar 

  6. Ben Cheikh, Y., Gaied, M.: Dunkl–Appell \(d\)-orthogonal polynomials,. Integr. Transfroms Spec. Funct. 18, 581–597 (2007)

    MathSciNet  Google Scholar 

  7. Ben Cheikh, Y., Zeghouani, A.: Some discrete \(d\)-orthogonal polynomial sets. J. Comput. Appl. Math. 156, 2–22 (2003)

    MathSciNet  Google Scholar 

  8. Bueno, M.I., Marcellán, F.: Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 384, 215–242 (2004)

    MathSciNet  Google Scholar 

  9. Chaggara, H., Ben Romdhane, N.: On the zeros of the hyper-Bessel function. Integr. Transforms Spec. Funct. 26, 96–101 (2015)

    MathSciNet  Google Scholar 

  10. Chihara, T.S.: On co-recursive orthogonal polynomials. Proc. Am. Math. Soc. 8, 899–905 (1957)

    MathSciNet  Google Scholar 

  11. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    Google Scholar 

  12. Coussement, E., Coussement, J., Van Assche, W.: Asymptotic zero distribution for a class of multiple orthogonal polynomials. Trans. Am. Math. Soc. 360, 5571–5588 (2008)

    MathSciNet  Google Scholar 

  13. de Bruin, M.G.: Classical convergence theorems for generalized continued fraction. Numer. Algorithms 44, 367–380 (2007)

    MathSciNet  Google Scholar 

  14. Dickinson, D.: On certain polynomials associated with orthogonal polynomials. Boll. Un. Mat. Ital. 13, 116–124 (1958)

    MathSciNet  Google Scholar 

  15. Dini, J., Maroni, P., Ronveaux, A.: Sur une perturbation de la récurrence vérifiée par une suite de polynômes orthogonaux. Port. Math. 46, 269–282 (1989)

    Google Scholar 

  16. Douak, K.: The relation of the \(d\)-orthogonal polynomials to the Appell polynomials. J. Comput. Appl. Math. 70, 279–295 (1996)

    MathSciNet  Google Scholar 

  17. Eiermann, H., Varga, R.S.: Zeros and local extreme points of Faber polynomials associated with hypocycloidal domains. Electron. Trans. Numer. Anal. 1, 49–71 (1993)

    MathSciNet  Google Scholar 

  18. Evans, W.D., Littlejohn, L.L., Marcellán, F., Markett, C., Ronveaux, A.: On recurrence relations for Sobolev orthogonal polynomials. SIAM J. Math. Anal. 26(2), 446–467 (1995)

    MathSciNet  Google Scholar 

  19. Foupouagnigni, M., Koepf, W., Ronveaux, A.: On forth-order difference equations for orthogonal polynomials of discrete variable: derivation, factorization and solutions. J. Diff. Eqn. Appl. 9, 777–804 (2003)

    Google Scholar 

  20. Foupouagnigni, M., Koepf, W., Ronveaux, A.: Factorization of fourth-order differential equations for perturbed classical orthogonal polynomials. J. Comput. Appl. Math. 162, 299–326 (2004)

    MathSciNet  Google Scholar 

  21. Gantmakher, F., Krein, M.: Sur les matrices complètement non négatives et oscillatoires. Compositio Math. 4, 445–476 (1937)

    MathSciNet  Google Scholar 

  22. Garza, L.E., Marcellán, F.: Orthogonal polynomials and perturbations on measures supported on the real line and on the unit circle. A matrix perspective. Expo. Math. 34, 287–326 (2016)

    MathSciNet  Google Scholar 

  23. Grosjean, C.C.: Theory of recursive generation of systems of orthogonal polynomials: an illustrative example. J. Comput. Appl. Math. 12(13), 299–318 (1985)

    MathSciNet  Google Scholar 

  24. Grosjean, C.C.: The weight functions, generating functions and miscellaneous properties of the sequences of orthogonal polynomials of the second kind associated with the Jacobi and the Gegenbauer polynomials. J. Comput. Appl. Math. 16(3), 259–307 (1986)

    MathSciNet  Google Scholar 

  25. Hou, Q.-H., Mu, Y.-P.: Recurent sequences and Schur functions. Adv. Appl. Math. 31, 150–162 (2003)

    Google Scholar 

  26. Kalyagin, V.A.: Hermite-Padé and spectral analysis of nonsymmetric operators. Mat. Sb. 185, 79–100 (1994)

    Google Scholar 

  27. Marcellán, F., Dehesa, J.S., Ronveaux, A.: On orthogonal polynomials with perturbed recurrence relations. J. Comput. Appl. Math. 30, 203–212 (1990)

    MathSciNet  Google Scholar 

  28. Marcellán, F., Saib, A.: Linear combinations of \(d\)-orthogonal polynomials. Bull. Malays. Math. Sci. Soc. 42, 2009–2038 (2019)

    MathSciNet  Google Scholar 

  29. Maroni, P.: Une généralisation du théorème de Favard-Shohat sur les polynômes orthogonaux,. C. R. Acad. Sci. Paris 293, 19–22 (1981)

    MathSciNet  Google Scholar 

  30. Maroni, P.: L’orthogonalité et les récurrences de polynômes d’ordre supérieur à deux. Ann. Fac. Sci. Toulouse 10, 105–139 (1989)

    MathSciNet  Google Scholar 

  31. Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In Orthogonal polynomials and their Applications; C. Brezinski et al., Eds.; IMACS Ann. Comput. Appl. Math. 9: Baltzer, Basel, pp. 95–130 (1991)

  32. Maroni, P.: Two-dimentional orthogonal polynomials, their associated sets and co-recursive sets. Numer. Algorithms 3, 299–312 (1992)

    MathSciNet  Google Scholar 

  33. Maroni, P.: An introduction to second degree forms. Adv. Comput. Math. 3, 59–83 (1995)

    MathSciNet  Google Scholar 

  34. Pinkus, A.: Totally Positive Matrices. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  35. Ronveaux, A., Belmehdi, S., Dini, J., Maroni, P.: Fourth-order differential equation for the co-modified of semi-classical orthgononal polynomials. J. Comput. Appl. Math. 29, 225–231 (1990)

    MathSciNet  Google Scholar 

  36. Ronveaux, A., Van Assche, W.: Upward extension of the Jacobi matrix for orthogonal polynomials. J. Approx. Theory 86, 335–357 (1996)

    MathSciNet  Google Scholar 

  37. Saib, A., Zerouki, E.: On associated and co-recursive \(d\)-orthogonal polynomials. Math. Slovaca 63, 1037–1052 (2013)

    MathSciNet  Google Scholar 

  38. Saib, A., Zerouki, E.: Some inverse problems for \(d\)-orthogonal polynomials. Mediterr. J. Math. 10, 865–885 (2013)

    MathSciNet  Google Scholar 

  39. Slim, H.A.: On co-recursive orthogonal polynomials and their application to potential scattering. J. Math. Anal. Appl. 136, 1–19 (1988)

    MathSciNet  Google Scholar 

  40. Stieltjes, T.J.: Recherches sur les fractions continues. Ann. Fac. Sci. Toulouse 8, J1–J122 (1894)

    MathSciNet  Google Scholar 

  41. Stieltjes, T.J.: Recherches sur les fractions continues. Ann. Fac Sci. Toulouse 9, A1-47 (1895)

    MathSciNet  Google Scholar 

  42. Valent, G., Van Assche, W.: The impact of Stieltjes’ work on continued fractions and orthogonal polynomials: additional material. J. Comput. Appl. Math. 65, 419–447 (1995)

    MathSciNet  Google Scholar 

  43. Van Assche, W.: Orthogonal polynomials, associated polynomials and functions of the second kind. J. Comput. Appl. Math. 37, 237–249 (1991)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank the referee of this paper for his/her useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessadek Saib.

Ethics declarations

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saib, A. On Co-polynomials and d-Orthogonality. La Matematica 3, 45–78 (2024). https://doi.org/10.1007/s44007-023-00076-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44007-023-00076-9

Keywords

Navigation