CUDA(Compute Unified Device Architecture:クーダ)とは、NVIDIAが開発・提供している、GPU向けの汎用並列コンピューティングプラットフォーム(並列コンピューティングアーキテクチャ)およびプログラミングモデルである[4][5][6]。専用のC/C++コンパイラ (nvcc) やライブラリ (API) などが提供されている。なおNVIDIA製GPUにおいては、OpenCL/DirectComputeなどの類似APIコールは、すべて共通のGPGPUプラットフォームであるCUDAを経由することになる[7]。 CUDAの処理の流れ 1. メインメモリ(ホストメモリ)からデータをGPU用メモリ(デバイスメモリ)にコピーする。 2. CPUがGPUに対して処理を指示する。 3. GPUが必要なデータを取り込み各コアで並列実行する。 4. 結果をGPU用メモリか
慶應義塾大学教授で工学博士の中村維男氏。IEEEのフェローを務めるほか、英ロンドン大学インペリアル校教授兼フェロー、米スタンフォード大学客員教授、東北大学名誉教授などを兼任する。HPC Open Forumで新たに立ち上がったGPUコンピューティング分科会長に就任 「GPUは、CPUに比べると、ちょっと知能は落ちる。しかし、いったん走り出せばイノシシのように50倍ぐらいの速さで走る」。並列処理コンピューティングの第1人者として知られる中村維男教授はGPU(グラフィックス・プロセッシング・ユニット)の特性をそう説明する。GPUは条件分岐が入る処理などは苦手だが、単純な計算処理の並列化では大きな力を発揮する。 こうしたGPUの特性から、これまでベクトル型の並列コンピュータやCPUのクラスタ構成で実現してきたHPC(ハイパフォーマンスコンピュータ)、いわゆるスパコンで、GPU(グラフィックス・プ
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く