Analytical Solutions of Time-Fractional Navier–Stokes Equations Employing Homotopy Perturbation–Laplace Transform Method
<p>Plots solution application 1 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Plots solution application 1 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mi>y</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <msub> <mrow> <mo> </mo> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>Plots solution application 1 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mo> </mo> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>Plots solution application 1 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mo> </mo> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p> "> Figure 4 Cont.
<p>Plots solution application 1 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mo> </mo> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Plots solution application 1 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mo> </mo> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Plots solution application 1 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mo> </mo> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Plots solution application 2 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>y</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 8
<p>Plots solution application 1 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mi>y</mi> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mn>0.9</mn> <mo>,</mo> <mo> </mo> <mn>0.6</mn> <mo>,</mo> <mo> </mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 9
<p>Plots solution application 2 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 9 Cont.
<p>Plots solution application 2 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 10
<p>Plots solution application 2 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>.</p> "> Figure 11
<p>Plots solution application 2 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mrow> <mo> </mo> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <msub> <mrow> <mo> </mo> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>.</p> "> Figure 12
<p>Plots solution application 2 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 12 Cont.
<p>Plots solution application 2 with <math display="inline"><semantics> <mrow> <mi>a</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <msub> <mrow> <mi>ρ</mi> </mrow> <mrow> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mi>t</mi> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mi>g</mi> </mrow> <mrow> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>α</mi> <mo>=</mo> <mn>0.3</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminaries and Definitions
Caputo–Hadamard Fractional Derivatives
3. The Amended Laplace Transforms
- (i)
- is continuous or piecewise continuous on every finite subinterval of ,
- (ii)
- There exist a positive constant and a such that for a given large ,
4. Homotopy Perturbation–Laplace Transform Method (HP–LTM)
5. Convergence Analysis and Error Estimation
6. Application of HP–LTM on NS Equation
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- West, B.J.; Bologna, M.; Grigolini, P. Physics of Fractal Operators; Springer: New York, NY, USA, 2003; Volume 35. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Miller, K.S. An Introduction to the Fractional Calculus and Fractional Differential Equations; John Willey & Sons: Hoboken, NJ, USA, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 2009, 228, 3137–3153. [Google Scholar] [CrossRef]
- Klafter, J.; Lim, S.C.; Metzler, R. Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2012. [Google Scholar]
- Baleanu, D.; Machado, J.A.T.; Luo, A.C. (Eds.) Fractional Dynamics and Control; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Goldfain, E. Fractional dynamics, Cantorian space–time and the gauge hierarchy problem. Chaos Solitons Fractals 2004, 22, 513–520. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z.; Erturk, V.S. Generalized differential transform method for solving a space-and time-fractional diffusion-wave equation. Phys. Lett. A 2007, 370, 379–387. [Google Scholar] [CrossRef]
- Erturk, V.S.; Momani, S.; Odibat, Z. Application of generalized differential transform method to multi-order fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2008, 13, 1642–1654. [Google Scholar] [CrossRef]
- Ahmed, H.F.; Bahgat, M.S.; Zaki, M. Numerical approaches to system of fractional partial differential equations. J. Egypt. Math. Soc. 2017, 25, 141–150. [Google Scholar] [CrossRef]
- Jafari, H.; Khalique, C.M.; Nazari, M. Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion–wave equations. Appl. Math. Lett. 2011, 24, 1799–1805. [Google Scholar] [CrossRef]
- Daftardar-Gejji, V.; Bhalekar, S. Solving multi-term linear and non-linear diffusion–wave equations of fractional order by Adomian decomposition method. Appl. Math. Comput. 2008, 202, 113–120. [Google Scholar] [CrossRef]
- Chamekh, M.; Elzaki, T.M. Explicit solution for some generalized fluids in laminar flow with slip boundary conditions. J. Math. Comput. Sci. 2018, 18, 272–281. [Google Scholar] [CrossRef]
- Sushila, J.S.; Shishodia, Y.S. A new reliable approach for two-dimensional and axisymmetric unsteady flows between parallel plates. Z. Naturforschung A 2013, 68, 629–634. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, D.; Kılıçman, A. Numerical solutions of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations. In Abstract and Applied Analysis; Hindawi: London, UK, 2014; Volume 2014. [Google Scholar]
- Gad-Allah, M.R.; Elzaki, T.M. Application of new homotopy perturbation method for solving partial differential equations. J. Comput. Theor. Nanosci. 2018, 15, 500–508. [Google Scholar] [CrossRef]
- Wang, Q. Homotopy perturbation method for fractional KdV equation. Appl. Math. Comput. 2007, 190, 1795–1802. [Google Scholar] [CrossRef]
- Kurulay, M.; Bayram, M. Approximate analytical solution for the fractional modified KdV by differential transform method. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1777–1782. [Google Scholar] [CrossRef]
- Kurulay, M.; Akinlar, M.A.; Ibragimov, R. Computational solution of a fractional integro-differential equation. In Abstract and Applied Analysis; Hindawi: London, UK, 2013; Volume 2013. [Google Scholar]
- El-Shahed, M.; Salem, A. On the generalized Navier–Stokes equations. Appl. Math. Comput. 2004, 156, 287–293. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, J.; Kumar, S. A fractional model of Navier–Stokes equation arising in unsteady flow of a viscous fluid. J. Assoc. Arab. Univ. Basic Appl. Sci. 2015, 17, 14–19. [Google Scholar] [CrossRef]
- Birajdar, G.A. Numerical solution of time fractional Navier-Stokes equation by discrete Adomian decomposition method. Nonlinear Eng. 2014, 3, 21–26. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method. Appl. Math. Comput. 2006, 177, 488–494. [Google Scholar] [CrossRef]
- Sunil, K.; Kumar, D.; Abbasbandy, S.; Rashidi, M.M. Analytical solution of fractional Navier–Stokes equation by using modified Laplace decomposition method. Ain Shams Eng. J. 2014, 5, 569–574. [Google Scholar]
- Chaurasia, V.B.L.; Kumar, D. Solution of the time-fractional Navier–Stokes equation. Gen. Math. Notes 2011, 4, 49–59. [Google Scholar]
- Dhiman, N.; Chauhan, A. An approximate analytical solution description of time-fractional order Fokker-Plank equation by using FRDTM. Asia Pacific J. Eng. Sci. Technol. 2015, 1, 34–47. [Google Scholar]
- Jaber, K.K.; Ahmad, R.S. Analytical solution of the time fractional Navier-Stokes equation. Ain Shams Eng. J. 2018, 9, 1917–1927. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J. Numerical analysis for Navier–Stokes equations with time fractional derivatives. Appl. Math. Comput. 2018, 336, 481–489. [Google Scholar] [CrossRef]
- Eltayeb, H.; Bachar, I.; Mesloub, S. A Note on the Time-Fractional Navier–Stokes Equation and the Double Sumudu-Generalized Laplace Transform Decomposition Method. Axioms 2024, 13, 44. [Google Scholar] [CrossRef]
- Prakash, A.; Veeresha, P.; Prakasha, D.G.; Goyal, M. A new efficient technique for solving fractional coupled Navier–Stokes equations using q-homotopy analysis transform method. Pramana J. Phys. 2019, 93, 6. [Google Scholar] [CrossRef]
- Mahmood, S.; Shah, R.; khan, H.; Arif, M. Laplace Adomian Decomposition Method for Multi Dimensional Time Fractional Model of Navier-Stokes Equation. Symmetry 2019, 11, 149. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2012, 2012, 142. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst. S 2020, 13, 709–722. [Google Scholar] [CrossRef]
- Bistafa, S.R. On the development of the Navier-Stokes equation by Navier. Rev. Bras. Ensino Física 2017, 40, e2603. [Google Scholar] [CrossRef]
- Jena, R.M.; Chakraverty, S. Solving time-fractional Navier–Stokes equations using homotopy perturbation Elzaki transform. SN Appl. Sci. 2019, 1, 16. [Google Scholar] [CrossRef]
- Oliveira, D.S.; de Oliveira, E.C. Analytical solutions for Navier–Stokes equations with Caputo fractional derivative. SeMA 2021, 78, 137–154. [Google Scholar] [CrossRef]
- Singh, B.K.; Kumar, P. FRDTM for numerical simulation of multi-dimensional, time-fractional model of Navier–Stokes equation. Ain Shams Eng. J. 2018, 9, 827–834. [Google Scholar] [CrossRef]
- Sripacharasakullert, P.; Sawangtong, W.; Sawangtong, P. An approximate analytical solution of the fractional multi-dimensional Burgers equation by the homotopy perturbation method. Adv. Differ. Equ. 2019, 2019, 252. [Google Scholar] [CrossRef]
- Li, C.P.; Li, Z.Q. Asymptotic behaviors of solution to Caputo-Hadamard fractional partial differential equation with fractional Laplacian. Int. J. Comput. Math. 2021, 98, 305–339. [Google Scholar] [CrossRef]
- Arioua, Y.; Benhamidouche, N. Boundary value problem for Caputo-Hadamard fractional differential equations. Surv. Math. Its Appl. 2017, 12, 103–115. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, A.M.; Mihoubi, H.; Arioua, Y.; Bouderah, B. Analytical Solutions of Time-Fractional Navier–Stokes Equations Employing Homotopy Perturbation–Laplace Transform Method. Fractal Fract. 2025, 9, 23. https://doi.org/10.3390/fractalfract9010023
Alqahtani AM, Mihoubi H, Arioua Y, Bouderah B. Analytical Solutions of Time-Fractional Navier–Stokes Equations Employing Homotopy Perturbation–Laplace Transform Method. Fractal and Fractional. 2025; 9(1):23. https://doi.org/10.3390/fractalfract9010023
Chicago/Turabian StyleAlqahtani, Awatif Muflih, Hamza Mihoubi, Yacine Arioua, and Brahim Bouderah. 2025. "Analytical Solutions of Time-Fractional Navier–Stokes Equations Employing Homotopy Perturbation–Laplace Transform Method" Fractal and Fractional 9, no. 1: 23. https://doi.org/10.3390/fractalfract9010023
APA StyleAlqahtani, A. M., Mihoubi, H., Arioua, Y., & Bouderah, B. (2025). Analytical Solutions of Time-Fractional Navier–Stokes Equations Employing Homotopy Perturbation–Laplace Transform Method. Fractal and Fractional, 9(1), 23. https://doi.org/10.3390/fractalfract9010023