[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Next Issue
Volume 9, February
Previous Issue
Volume 8, December
You seem to have javascript disabled. Please note that many of the page functionalities won't work as expected without javascript enabled.
 
 

Fractal Fract., Volume 9, Issue 1 (January 2025) – 55 articles

Cover Story (view full-size image): Identifying the relevant scale for observing process influence is crucial in multiscale characterization. This study evaluates methods to determine a relevant scale for the relationship between relative areas and grit blasting pressure. Various media types and calculation methods are tested, along with bootstrapping approaches for scale determination. The study highlights the advantages of relative area over traditional parameters and discusses the impact of media types on surface topography. The findings suggest a pertinent scale of 10,000 µm² for the Patchwork method and a 120 µm cut-off length for the Sdr method.This research enhances the understanding of how media types and blasting pressures affect surface topography, providing insights for material processing and surface treatment. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
23 pages, 17782 KiB  
Article
Discrete Fractional-Order Modeling of Recurrent Childhood Diseases Using the Caputo Difference Operator
by Yasir A. Madani, Zeeshan Ali, Mohammed Rabih, Amer Alsulami, Nidal H. E. Eljaneid, Khaled Aldwoah and Blgys Muflh
Fractal Fract. 2025, 9(1), 55; https://doi.org/10.3390/fractalfract9010055 - 20 Jan 2025
Viewed by 639
Abstract
This paper presents a new SIRS model for recurrent childhood diseases under the Caputo fractional difference operator. The existence theory is established using Brouwer’s fixed-point theorem and the Banach contraction principle, providing a comprehensive mathematical foundation for the model. Ulam stability is demonstrated [...] Read more.
This paper presents a new SIRS model for recurrent childhood diseases under the Caputo fractional difference operator. The existence theory is established using Brouwer’s fixed-point theorem and the Banach contraction principle, providing a comprehensive mathematical foundation for the model. Ulam stability is demonstrated using nonlinear functional analysis. Sensitivity analysis is conducted based on the variation of each parameter, and the basic reproduction number (R0) is introduced to assess local stability at two equilibrium points. The stability analysis indicates that the disease-free equilibrium point is stable when R0<1, while the endemic equilibrium point is stable when R0>1 and otherwise unstable. Numerical simulations demonstrate the model’s effectiveness in capturing realistic scenarios, particularly the recurrent patterns observed in some childhood diseases. Full article
Show Figures

Figure 1

Figure 1
<p>Flowchart illustrating the dynamics of model (<a href="#FD1-fractalfract-09-00055" class="html-disp-formula">1</a>).</p>
Full article ">Figure 2
<p>The sensitivity of <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> to each parameter in the model.</p>
Full article ">Figure 3
<p>Case 1: Contour plots of the contributions of pairs of parameters to <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math>.</p>
Full article ">Figure 4
<p>Case 2: Contour plots of the contributions of pairs of parameters to <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math>.</p>
Full article ">Figure 5
<p>Case 3: Contour plots of the contributions of pairs of parameters to <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math>.</p>
Full article ">Figure 6
<p>Case 1: The relative population dynamics of childhood disease for various values of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <mo>Λ</mo> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mi>β</mi> <mo>=</mo> <mn>0.6</mn> <mo>,</mo> <mi>σ</mi> <mo>=</mo> <mn>0.3</mn> <mo>;</mo> <mi>μ</mi> <mo>=</mo> <mn>0.015</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>Case 1: Phase-plane behavior for various values of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>0.15</mn> <mo>,</mo> <mo>Λ</mo> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.6</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.3</mn> <mo>;</mo> <mi>μ</mi> <mo>=</mo> <mn>0.015</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.02</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>Case 2: The relative population dynamics of childhood disease for various values of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo>Λ</mo> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mi>β</mi> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mi>σ</mi> <mo>=</mo> <mn>0.4</mn> <mo>;</mo> <mi>μ</mi> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>0.03</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Case 2: Phase-plane behavior for various values of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo>Λ</mo> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mi>β</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.4</mn> <mo>;</mo> <mi>μ</mi> <mo>=</mo> <mn>0.02</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>0.03</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Case 3: The relative population dynamics of childhood disease for various values of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo>Λ</mo> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mi>β</mi> <mo>=</mo> <mn>0.7</mn> <mo>,</mo> <mi>σ</mi> <mo>=</mo> <mn>0.35</mn> <mo>;</mo> <mi>μ</mi> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>Case 3: Phase-plane behavior for various values of <math display="inline"><semantics> <mi>ϕ</mi> </semantics></math>, where <math display="inline"><semantics> <mrow> <msub> <mi>λ</mi> <mi>v</mi> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo>Λ</mo> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>=</mo> <mn>0.35</mn> <mo>;</mo> <mi>μ</mi> <mo>=</mo> <mn>0.01</mn> <mo>,</mo> <mi>δ</mi> <mo>=</mo> <mn>0.005</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.04</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>Comparison of the MATLAB ode45 solver with the discrete fractional-order method (<a href="#FD25-fractalfract-09-00055" class="html-disp-formula">25</a>) (for <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mo>=</mo> <mn>1.0</mn> </mrow> </semantics></math>).</p>
Full article ">
13 pages, 1418 KiB  
Article
Phased Fractional Low-Order Moment-Based Doppler Shift Estimation in the Presence of Interference Signals and Impulsive Noise
by Bo Ni, Mengjia Wang, Jiacheng Zhang, Ying Zhang and Tao Liu
Fractal Fract. 2025, 9(1), 54; https://doi.org/10.3390/fractalfract9010054 - 20 Jan 2025
Viewed by 623
Abstract
Doppler shift estimation continues to be a critical challenge of utmost significance in both theoretical research and practical engineering applications. Many innovators have crafted solutions specific to this issue, with notable contributions across various signals and scenarios. Given that cyclostationary signals are prevalent [...] Read more.
Doppler shift estimation continues to be a critical challenge of utmost significance in both theoretical research and practical engineering applications. Many innovators have crafted solutions specific to this issue, with notable contributions across various signals and scenarios. Given that cyclostationary signals are prevalent in both artificial and natural phenomena, we propose a novel framework based on the phased fractional lower-order moment (PFLOM) for estimating Doppler shift in mixed cyclostationary signals. During the estimation process, a more realistic impulse noise model is examined in contrast to the ideal Gaussian noise typically assumed in conventional methods. This approach is meticulously derived through a series of detailed steps in line with cyclostationary signal processing and PFLOM principles. Furthermore, an extensive simulation has been conducted to validate the efficacy and robustness of our proposed method. It is anticipated that the concept and method presented here could be applied more broadly due to its solid theoretical underpinnings. Full article
Show Figures

Figure 1

Figure 1
<p>Performance comparison of sparse reconstruction with different regularization coefficients. (<b>a</b>) 3D graph of <math display="inline"><semantics> <mrow> <mrow> <mo stretchy="false">|</mo> </mrow> <msubsup> <mi>Z</mi> <mi>r</mi> <mrow> <mo>〈</mo> <mi>p</mi> <mo>〉</mo> </mrow> </msubsup> <mrow> <mrow> <mo>(</mo> <mi>ξ</mi> <mo>,</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo stretchy="false">|</mo> </mrow> </mrow> </semantics></math>; (<b>b</b>) projection of 3D graph on the cyclic frequency domain; (<b>c</b>) top view of 3D graph with marks; and (<b>d</b>) top view of 3D graph without marks.</p>
Full article ">Figure 2
<p>Performance comparison based on PAPRs of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under different conditions. (<b>a</b>) PAPR of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>GSNR</mi> <mo>=</mo> <mn>0</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math>; (<b>b</b>) PAPR of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>GSNR</mi> <mo>=</mo> <mn>0</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math>; (<b>c</b>) PAPR of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>GSNR</mi> <mo>=</mo> <mn>5</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math>; (<b>d</b>) PAPR of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>GSNR</mi> <mo>=</mo> <mn>5</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math>; (<b>e</b>) PAPR of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>GSNR</mi> <mo>=</mo> <mn>10</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math>; and (<b>f</b>) PAPR of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at <math display="inline"><semantics> <mrow> <mi>GSNR</mi> <mo>=</mo> <mn>10</mn> <mspace width="3.33333pt"/> <mi>dB</mi> </mrow> </semantics></math>.</p>
Full article ">
25 pages, 477 KiB  
Article
Topology of Locally and Non-Locally Generalized Derivatives
by Dimiter Prodanov
Fractal Fract. 2025, 9(1), 53; https://doi.org/10.3390/fractalfract9010053 - 20 Jan 2025
Viewed by 574
Abstract
This article investigates the continuity of derivatives of real-valued functions from a topological perspective. This is achieved by the characterization of their sets of discontinuity. The same principle is applied to Gateaux derivatives and gradients in Euclidean spaces. This article also introduces a [...] Read more.
This article investigates the continuity of derivatives of real-valued functions from a topological perspective. This is achieved by the characterization of their sets of discontinuity. The same principle is applied to Gateaux derivatives and gradients in Euclidean spaces. This article also introduces a generalization of the derivatives from the perspective of the modulus of continuity and characterizes their sets of discontinuities. There is a need for such generalizations when dealing with physical phenomena, such as fractures, shock waves, turbulence, Brownian motion, etc. Full article
Show Figures

Figure 1

Figure 1
<p>Neidinger–Bernouli function and its fractional variation. (<b>A</b>)—Original Neidinger construction <math display="inline"><semantics> <mrow> <mi>N</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>2</mn> </msqrt> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>M</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>2</mn> </msqrt> <mo>)</mo> </mrow> </mrow> </semantics></math>; (<b>B</b>)—modified construction <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mn>1</mn> <mo>/</mo> <msqrt> <mn>2</mn> </msqrt> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">
25 pages, 722 KiB  
Article
Numerical Approximations and Fractional Calculus: Extending Boole’s Rule with Riemann–Liouville Fractional Integral Inequalities
by Abdul Mateen, Wali Haider, Asia Shehzadi, Hüseyin Budak and Bandar Bin-Mohsin
Fractal Fract. 2025, 9(1), 52; https://doi.org/10.3390/fractalfract9010052 - 18 Jan 2025
Viewed by 787
Abstract
This paper develops integral inequalities for first-order differentiable convex functions within the framework of fractional calculus, extending Boole-type inequalities to this domain. An integral equality involving Riemann–Liouville fractional integrals is established, forming the foundation for deriving novel fractional Boole-type inequalities tailored to differentiable [...] Read more.
This paper develops integral inequalities for first-order differentiable convex functions within the framework of fractional calculus, extending Boole-type inequalities to this domain. An integral equality involving Riemann–Liouville fractional integrals is established, forming the foundation for deriving novel fractional Boole-type inequalities tailored to differentiable convex functions. The proposed framework encompasses a wide range of functional classes, including Lipschitzian functions, bounded functions, convex functions, and functions of bounded variation, thereby broadening the applicability of these inequalities to diverse mathematical settings. The research emphasizes the importance of the Riemann–Liouville fractional operator in solving problems related to non-integer-order differentiation, highlighting its pivotal role in enhancing classical inequalities. These newly established inequalities offer sharper error bounds for various numerical quadrature formulas in classical calculus, marking a significant advancement in computational mathematics. Numerical examples, computational analysis, applications to quadrature formulas and graphical illustrations substantiate the efficacy of the proposed inequalities in improving the accuracy of integral approximations, particularly within the context of fractional calculus. Future directions for this research include extending the framework to incorporate q-calculus, symmetrized q-calculus, alternative fractional operators, multiplicative calculus, and multidimensional spaces. These extensions would enable a comprehensive exploration of Boole’s formula and its associated error bounds, providing deeper insights into its performance across a broader range of mathematical and computational settings. Full article
(This article belongs to the Section General Mathematics, Analysis)
Show Figures

Figure 1

Figure 1
<p>Numerical analysis of Theorem 3: (<bold>a</bold>) 3D-plot, (<bold>b</bold>) 2D-plot for <inline-formula> <mml:math id="mm199"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, computed and plotted with Mathematica.</p>
Full article ">Figure 2
<p>Numerical analysis of Theorem 3: (<bold>a</bold>) 3D-plot, (<bold>b</bold>) 2D-plot for <inline-formula> <mml:math id="mm200"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Θ</mml:mi> <mml:mfenced open="(" close=")"> <mml:mi>ϖ</mml:mi> </mml:mfenced> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>ϖ</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, computed and plotted with Wolfram Mathematica.</p>
Full article ">Figure 3
<p>Numerical analysis of Theorem 3: (<bold>a</bold>) 3D-plot, (<bold>b</bold>) 2D-plot for for <inline-formula> <mml:math id="mm201"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Θ</mml:mi> <mml:mfenced open="(" close=")"> <mml:mi>ϖ</mml:mi> </mml:mfenced> <mml:mo>=</mml:mo> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>ϖ</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, computed and plotted with Wolfram Mathematica.</p>
Full article ">Figure 4
<p>Numerical analysis of Theorem 6: (<bold>a</bold>) 3D-plot, (<bold>b</bold>) 2D-plot for <inline-formula> <mml:math id="mm202"> <mml:semantics> <mml:mrow> <mml:mi mathvariant="normal">Θ</mml:mi> <mml:mfenced open="(" close=")"> <mml:mi>ϖ</mml:mi> </mml:mfenced> <mml:mo>=</mml:mo> <mml:mi>A</mml:mi> <mml:mi>r</mml:mi> <mml:mi>c</mml:mi> <mml:mi>T</mml:mi> <mml:mi>a</mml:mi> <mml:mi>n</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϖ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, when <inline-formula> <mml:math id="mm203"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>∈</mml:mo> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo>]</mml:mo> </mml:mrow> </mml:semantics> </mml:math> </inline-formula>, computed and plotted with Wolfram Mathematica.</p>
Full article ">
21 pages, 103718 KiB  
Article
The Fractal Dimension, Structure Characteristics, and Damage Effects of Multi-Scale Cracks on Sandstone Under Triaxial Compression
by Pengjin Yang, Shengjun Miao, Kesheng Li, Xiangfan Shang, Pengliang Li and Meifeng Cai
Fractal Fract. 2025, 9(1), 51; https://doi.org/10.3390/fractalfract9010051 - 17 Jan 2025
Viewed by 689
Abstract
To study the influence of the spatial distribution and structure of multi-scale cracks on the mechanical behavior of rocks, triaxial compression tests and cyclic triaxial complete loading and unloading tests were conducted on sandstone, with real-time wave velocity monitoring and CT scan testing. [...] Read more.
To study the influence of the spatial distribution and structure of multi-scale cracks on the mechanical behavior of rocks, triaxial compression tests and cyclic triaxial complete loading and unloading tests were conducted on sandstone, with real-time wave velocity monitoring and CT scan testing. The quantitative classification criteria for multi-scale cracks on sandstone were established, and the constraint effect of confining pressure was analyzed. The crack with a length less than 0.1 mm is considered a small-scale crack, 0.1–1 mm is a medium-scale crack, and larger than 1 mm is a large-scale crack. As the confining pressure increases, the spatial fractal dimension of large-scale cracks decreases, while that of medium-scale cracks increases, and that of small-scale cracks remains stable. The respective nonlinear models of the aspect ratio were established with the length and density of multi-scale cracks. The results indicate significant differences in the effects of cracks of different scales on rock damage. The distribution density of medium-scale cracks in the failed specimen is higher, which is the main reason to produce damage. The small-scale cracks mainly originate from relatively uniform initial cracks in rocks, mainly distributed in medium-density and low-density areas. The results of this research provide important insights into how to quantitatively evaluate the damage of rocks. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

Figure 1
<p>Processed sandstone specimens and their microscopic structures. (<b>a</b>) Processed standard-sized sandstone specimens; (<b>b</b>) Mineral analysis results of sandstone specimen; (<b>c</b>) Electron microscopy scanning results of sandstone with a magnification of 1000.</p>
Full article ">Figure 2
<p>Complete experimental system. (<b>a</b>) MTS-815 Rock Mechanics Testing System and the matching ultrasonic velocity testing system. (<b>b</b>) Prepared sandstone specimens with probes.</p>
Full article ">Figure 3
<p>The confining pressure and deviatoric stress paths of the two sets of tests in this study. (<b>a</b>) Loading path of confining pressure and deviatoric stress of TC test. (<b>b</b>) Loading and unloading paths for the confining pressure and deviatoric stress CTCLU test.</p>
Full article ">Figure 4
<p>Stress–strain curves of TC and CTCLU tests on sandstone under different confining pressures. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>8</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>12</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>16</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Reconstruction results of three-dimensional cracks in sandstone specimen TC-0.</p>
Full article ">Figure 6
<p>Total volume distribution of cracks with different volume size.</p>
Full article ">Figure 7
<p>The projection of spatial centroid coordinates of cracks in sandstone onto the <span class="html-italic">xy</span> plane. (<b>a</b>) The projection of the crack centroid coordinates on the <span class="html-italic">xy</span> plane and the radius from the plane center; (<b>b</b>) The projection of the spatial centroid coordinates of the medium-scale crack on specimen TC-0 within the range of <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>5</mn> <mo> </mo> <mi>mm</mi> <mo>≤</mo> <mi>z</mi> <mo>≤</mo> <mn>5</mn> <mo> </mo> <mi>mm</mi> </mrow> </semantics></math>; (<b>c</b>) The projection of the spatial centroid coordinates of the small-scale crack on specimen TC-0 within the range of <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>5</mn> <mo> </mo> <mi>mm</mi> <mo>≤</mo> <mi>z</mi> <mo>≤</mo> <mn>5</mn> <mo> </mo> <mi>mm</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The fractal dimension of medium- and small-scale cracks in sandstone. (<b>a</b>) Example of fractal dimension calculation for medium- and small-scale cracks, when the range is <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>30</mn> <mo> </mo> <mi>mm</mi> <mo>≤</mo> <mi>z</mi> <mo>≤</mo> <mn>20</mn> <mo> </mo> <mi>mm</mi> </mrow> </semantics></math>; (<b>b</b>) The fractal dimension of medium- and small-scale cracks with different heights.</p>
Full article ">Figure 9
<p>The volume of medium- and small-scale cracks under different crack size. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>8</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>16</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>The variation law of spatial fractal dimension of multi scale cracks with confining pressure.</p>
Full article ">Figure 11
<p>The relationship between the wave velocity with stress level, when stress is unloaded and loaded completely. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>8</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>16</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>The real-time wave velocity monitoring results and fitting curves when the stress is unloaded. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>8</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>16</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>The real-time porosity evolution curves of sandstone with stress level. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>8</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>16</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>The relationship between crack volume and crack structural parameters. (<b>a</b>) Schematic diagram of crack equivalent volume and its aspect ratio; (<b>b</b>) The relationship between the length and the aspect ratio of cracks, taking <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>16</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math> as an example.</p>
Full article ">Figure 15
<p>Theoretical relationship between cumulative crack volume and aspect ratio when <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>16</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>.</p>
Full article ">Figure 16
<p>The distribution curve of sandstone crack density with crack aspect ratio. (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>4</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>8</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <mrow> <msub> <mi>σ</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>16</mn> <mo> </mo> <mi>MPa</mi> </mrow> </semantics></math>.</p>
Full article ">
26 pages, 1846 KiB  
Article
Analytical Techniques for Studying Fractional-Order Jaulent–Miodek System Within Algebraic Context
by Yousuf Alkhezi and Ahmad Shafee
Fractal Fract. 2025, 9(1), 50; https://doi.org/10.3390/fractalfract9010050 - 17 Jan 2025
Viewed by 743
Abstract
The proposed study seeks to investigate various analytical and numerical techniques for solving fractional differential equations, with a particular focus on their applications in mathematical modeling and scientific research within the field of algebra. This study intends to investigate methods such as the [...] Read more.
The proposed study seeks to investigate various analytical and numerical techniques for solving fractional differential equations, with a particular focus on their applications in mathematical modeling and scientific research within the field of algebra. This study intends to investigate methods such as the Aboodh transform iteration method and the Aboodh residual power series method, specifically for addressing the Jaulent–Miodek system of partial differential equations. By analyzing the behavior of fractional-order differential equations and their solutions, this research seeks to contribute to a deeper understanding of complex mathematical phenomena. Furthermore, this study examines the role of the Caputo operator in fractional calculus, offering insights into its significance in modeling real-world systems within the algebraic context. Through this research, novel approaches for solving fractional differential equations are developed, offering essential tools for researchers in diverse fields of science and engineering, including algebraic applications. Full article
(This article belongs to the Special Issue Fractional Systems, Integrals and Derivatives: Theory and Application)
Show Figures

Figure 1

Figure 1
<p>Comparison of fractional order p for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mo>Φ</mo> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>σ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> using the ARPSM.</p>
Full article ">Figure 2
<p>2D comparison of fractional order p for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mo>Φ</mo> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>σ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> using the ARPSM.</p>
Full article ">Figure 3
<p>Comparison of fractional order p for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mo>Φ</mo> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>σ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> using the ARPSM.</p>
Full article ">Figure 4
<p>2D comparison of fractional order p for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mo>Φ</mo> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>σ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> using the ARPSM.</p>
Full article ">Figure 5
<p>Comparison of fractional order p for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mo>Φ</mo> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>σ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> using ATIM.</p>
Full article ">Figure 6
<p>2D comparison of fractional order p for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mo>Φ</mo> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>σ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> using ATIM.</p>
Full article ">Figure 7
<p>Comparison of fractional order p for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mo>Φ</mo> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>σ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> using ATIM.</p>
Full article ">Figure 8
<p>2D comparison of fractional order p for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.7</mn> </mrow> </semantics></math> of <math display="inline"><semantics> <mrow> <msub> <mo>Φ</mo> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>σ</mi> <mo>,</mo> <mi>ψ</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> at (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.05</mn> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>ψ</mi> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> using ATIM.</p>
Full article ">
27 pages, 16020 KiB  
Article
Pore Structure and Its Fractal Dimension: A Case Study of the Marine Shales of the Niutitang Formation in Northwest Hunan, South China
by Wei Jiang, Yang Zhang, Tianran Ma, Song Chen, Yang Hu, Qiang Wei and Dingxiang Zhuang
Fractal Fract. 2025, 9(1), 49; https://doi.org/10.3390/fractalfract9010049 - 17 Jan 2025
Viewed by 541
Abstract
To analyze the pore structure and fractal characteristics of marine shale in the lower Cambrian Niutitang Formation in northwestern Hunan Province, China, the pore characteristics of shale were characterized using total organic carbon (TOC) content, field emission scanning electron microscopy (FESEM), X-ray diffraction [...] Read more.
To analyze the pore structure and fractal characteristics of marine shale in the lower Cambrian Niutitang Formation in northwestern Hunan Province, China, the pore characteristics of shale were characterized using total organic carbon (TOC) content, field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), low temperature nitrogen adsorption (LT-N2GA) and methane adsorption experiments. The pore surface and pore space fractal dimensions of samples were calculated, respectively. The influencing factors of fractal dimensions and their impact on the adsorption of shale reservoirs were discussed. The results indicate the Niutitang Formation shale mainly develops four types of pores: organic pores, intragranular pores, intergranular pores and microcracks. The pores have a large specific surface area (SSA), primarily consisting of mesopores. The fractal dimensions are calculated using the FHH model and the XS model. The fractal dimensions (D2 and Df) are greater than D1, indicating that the pore surface with larger pore size is rougher, and the pore structure of shale is complex. The pore volume (PV), SSA, and TOC show positive correlations with the fractal dimensions but negative correlations with APS. There is no obvious correlation between fractal dimensions and quartz content, while clay minerals show a negative correlation with D2 and Df. This is mainly because clay mineral particles are small in size and have weak resistance to compaction. The pyrite content is positively correlated with the fractal dimensions because pyrite promotes the development of organic, intergranular, and mold pores. According to Pearson correlation analysis, the main influencing factors of the pore surface fractal dimension are PV, SSA, and APS. The main influencing factors of the pore space fractal dimension are APS and the content of clay minerals. Further analysis of the influence of the fractal dimension on the adsorption capacity of shale reveals that the fractal dimensions are positively correlated with Langmuir volume, indicating that fractal dimensions can be used as a quantitative target for evaluating shale gas reservoirs. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) Location map of the study area in the Middle Yangtze Region, Northwest Hunan, China (modified after [<a href="#B32-fractalfract-09-00049" class="html-bibr">32</a>]); (<b>b</b>) Niutitang Formation in the study area (modified after [<a href="#B32-fractalfract-09-00049" class="html-bibr">32</a>]).</p>
Full article ">Figure 2
<p>The bar graph of shale mineral composition.</p>
Full article ">Figure 3
<p>Correlations between mineral content and depth.</p>
Full article ">Figure 4
<p>(<b>a</b>) 3-end-number diagram of shale mineral composition (modified after [<a href="#B45-fractalfract-09-00049" class="html-bibr">45</a>]). (<b>b</b>) Ternary plot of shale mineral compositions of Niutitang Formation. (S = Siliceous shale lithofacies, CR = Clay-rich shale lithofacies, C = Calcareous shale lithofacies, M = Mixed shale lithofacies).</p>
Full article ">Figure 5
<p>Microscopic pore types and characteristics of shale samples from the Niutitang Formation. Polished surface observation: (<b>a</b>) Pyrite and microfractures in sample X-2; (<b>b</b>) OM pores and interP pores in sample X-5; (<b>c</b>) IntraP pores and OM pores in sample X-6; (<b>d</b>) Pore system of clay minerals in sample X-6; (<b>e</b>) OM pores, pyrite and pore system of clay minerals in sample X-7; (<b>f</b>) OM pores and interP pores in sample X-9; Natural section observation: (<b>g</b>) OM pores, pyrite and interP pores in sample X-7; (<b>h</b>) Microfractures in sample X-7; (<b>i</b>) OM pores and intraP pores in sample X-13.</p>
Full article ">Figure 6
<p>LT-N<sub>2</sub>GA curves of the Niutitang Formation shale in northwestern Hunan province.</p>
Full article ">Figure 7
<p>Pore size distribution of the shale sample.</p>
Full article ">Figure 8
<p>Fractal dimensions of the Niutitang Formation shale in northwestern Hunan province.</p>
Full article ">Figure 9
<p>The plot of lnN vs. lnε from the Niutitang Formation shales.</p>
Full article ">Figure 10
<p>Correlations between fractal dimensions and depth.</p>
Full article ">Figure 11
<p>The isothermal CH<sub>4</sub> adsorption curves for the Niutitang formation shale in Northwest Hunan.</p>
Full article ">Figure 12
<p>Correlations between fractal dimensions and TOC.</p>
Full article ">Figure 13
<p>Correlation between pore attributes and fractal dimensions of the Niutitang Formation shale in northwestern Hunan province. (<b>a</b>) Surface area and fractral dimension; (<b>b</b>) PV and fractral dimension; (<b>c</b>) APS and fractral dimension.</p>
Full article ">Figure 14
<p>Correlation between inorganic mineral content and fractal dimensions. (<b>a</b>) Quartz and fractral dimension; (<b>b</b>) Carbonate and fractral dimension; (<b>c</b>) Feldspar and fractral dimension; (<b>d</b>) Clay and fractral dimension; (<b>e</b>) Pyrite and fractral dimension.</p>
Full article ">Figure 15
<p>Correlation between different clay mineral contents and fractal dimensions. (<b>a</b>) Chlorite and fractral dimension; (<b>b</b>) Illite and fractral dimension.</p>
Full article ">Figure 16
<p>Correlation between TOC and pyrite content.</p>
Full article ">Figure 17
<p>Correlation coefficients of the shale mineral composition, TOC, pore parameters and fractal parameters.</p>
Full article ">Figure 18
<p>Correlation between Langmuir volume and fractal dimensions.</p>
Full article ">
26 pages, 7227 KiB  
Article
Uncertainty-Based Scale Identification and Process–Topography Interaction Analysis via Bootstrap: Application to Grit Blasting
by François Berkmans, Julie Lemesle, Robin Guibert, Michal Wieczorowski, Christopher Brown and Maxence Bigerelle
Fractal Fract. 2025, 9(1), 48; https://doi.org/10.3390/fractalfract9010048 - 17 Jan 2025
Viewed by 618
Abstract
Finding the relevant scale to observe the influence of a process is one of the most important purposes of multiscale surface characterization. This study investigates various methods to determine a pertinent scale for evaluating the relationship between the relative area and grit blasting [...] Read more.
Finding the relevant scale to observe the influence of a process is one of the most important purposes of multiscale surface characterization. This study investigates various methods to determine a pertinent scale for evaluating the relationship between the relative area and grit blasting pressure. Several media types were tested alongside two different methods for calculating the relative area and three bootstrapping approaches for scale determination through regression. Comparison with the existing literature highlights innovations in roughness parameter characterization, particularly the advantages of relative area over traditional parameters like Sa. This study also discusses the relevance of different media types in influencing surface topography. Additionally, insights from a similar study on the multiscale Sdq parameter and blasting pressure correlation are integrated, emphasizing a scale relevance akin to our Sdr method’s 120 µm cut-off length. Overall, our findings suggest a pertinent scale of 10,000 µm2 for the Patchwork method and a 120 µm cut-off length for the Sdr method, derived from bootstrapping on residual regression across all media. At the relevant scale, every value of R2 inferior to 0.83 is not significant with the threshold of 5% for the two methods of calculation of the relative area. This study enhances the understanding of how media types and blasting pressures impact surface topography, offering insights for refining material processing and surface treatment strategies. Full article
(This article belongs to the Special Issue Fractal Analysis and Its Applications in Materials Science)
Show Figures

Figure 1

Figure 1
<p>Comparison of two methods, Sdr (ISO 25178-2) and Patchwork, for calculating relative areas of surface topographies created by blasting with glass beads. The points represent the median of the relative area values, categorized by calculation method and pressure. Blue symbols indicate the median points for the Patchwork method, while red symbols correspond to the Sdr method. The scale refers to the cut-off length of the low-pass Gaussian filter applied in the Sdr calculation. For the Patchwork method, the tile size in µm<sup>2</sup> is equal to half the square of the cut-off length.</p>
Full article ">Figure 2
<p>Surface topographies of TA6V surfaces grit-blasted at 2 bar (<b>a</b>), 4 bar (<b>b</b>), and 8 bar (<b>c</b>) with the C300 medium. The aggressiveness of the medium can make it difficult to assess visually the gradation in blasting intensity. More surface topographies are shown in <a href="#app1-fractalfract-09-00048" class="html-app">Appendix A</a>.</p>
Full article ">Figure 3
<p>Diagram of the two calculation methods used in this study, shown in terms of relative length. The blue continuous line represents a real surface. The green line, a linear interpolation between measured height points, represents our measured profile (the Sdr method calculates the relative length at the sampling scale). The red line illustrates the profile obtained by the Patchwork method.</p>
Full article ">Figure 4
<p>Results of the linear regressions of the relative area as a function of pressure for the two calculation methods. Simulations from 0 to 9 are obtained from bootstrapping replication of the real data and then averaged. The results come from measurements performed on surfaces blasted with the C 300 medium (corundum). Each simulation corresponds to an R<sup>2</sup> value, which is then averaged.</p>
Full article ">Figure 5
<p>Analysis of the R<sup>2</sup> distributions according to the scale of calculation for relative area under hypotheses H1 (<b>a</b>) and H0 (<b>b</b>) for the three bootstrapping methods: simple bootstrap (<b>i</b>), bootstrap based on pairs (<b>ii</b>), and bootstrap based on residuals (<b>iii</b>). The tile size of the Patchwork method (in µm<sup>2</sup>) is equal to half the square of the cut-off length of the Sdr method. Two plots are proposed for each bootstrapping method: the first one based on the media (<b>c</b>,<b>e</b>,<b>g</b>) and the second one based on the method of the relative area calculation, Sdr or Patchwork (<b>d</b>,<b>f</b>,<b>h</b>).</p>
Full article ">Figure 5 Cont.
<p>Analysis of the R<sup>2</sup> distributions according to the scale of calculation for relative area under hypotheses H1 (<b>a</b>) and H0 (<b>b</b>) for the three bootstrapping methods: simple bootstrap (<b>i</b>), bootstrap based on pairs (<b>ii</b>), and bootstrap based on residuals (<b>iii</b>). The tile size of the Patchwork method (in µm<sup>2</sup>) is equal to half the square of the cut-off length of the Sdr method. Two plots are proposed for each bootstrapping method: the first one based on the media (<b>c</b>,<b>e</b>,<b>g</b>) and the second one based on the method of the relative area calculation, Sdr or Patchwork (<b>d</b>,<b>f</b>,<b>h</b>).</p>
Full article ">Figure 6
<p>Surface topographies of TA6V samples grit-blasted at 2 bar (<b>a</b>), 4 bar (<b>b</b>), and 8 bar (<b>c</b>) with the C300 medium. The range of height varies significantly. The surfaces are the same as those presented in <a href="#fractalfract-09-00048-f002" class="html-fig">Figure 2</a> but this time filtered with a low-pass Gaussian filter at a 120 µm cut off (the relevance scale).</p>
Full article ">Figure 7
<p>Distributions of the R<sup>2</sup> values at all scales under H1 (<b>a</b>) and H0 (<b>b</b>) for every method of bootstrapping computation: simple bootstrap (<b>i</b>), paired bootstrap (<b>ii</b>), and bootstrap based on residuals (<b>iii</b>). The black lines on the H0 plots are the threshold value at 95% of the R<sup>2</sup> distribution: 0.59 (<b>bi</b>), 0.91 (<b>bii</b>), and 0.83 (<b>biii</b>).</p>
Full article ">Figure 8
<p>Evolution of the slope (<b>i</b>) and intercept (<b>ii</b>) as a function of scale for H1 (<b>a</b>) and H0 (<b>b</b>) using bootstrap based on residuals.</p>
Full article ">Figure 9
<p>Distribution of the R<sup>2</sup> values by medium at the relevant scale for the Patchwork (<b>i</b>) and Sdr (<b>ii</b>) methods and for H1 (<b>a</b>) and H0 (<b>b</b>). The digits after 250 indicate the blasting series (e.g., G 250-1 = first series of the G250 medium).</p>
Full article ">Figure 10
<p>Box plots of the relative area values by pressure at the relevance scale (tile size between 10,000 µm<sup>2</sup> and 14,000 µm<sup>2</sup> for the Patchwork method and cut-off length of 120 µm for the Sdr method). The results are presented by medium (<b>a</b>–<b>e</b>) and calculation method (<b>i</b>,<b>ii</b>).</p>
Full article ">Figure 10 Cont.
<p>Box plots of the relative area values by pressure at the relevance scale (tile size between 10,000 µm<sup>2</sup> and 14,000 µm<sup>2</sup> for the Patchwork method and cut-off length of 120 µm for the Sdr method). The results are presented by medium (<b>a</b>–<b>e</b>) and calculation method (<b>i</b>,<b>ii</b>).</p>
Full article ">Figure 11
<p>Bivariate density (intercept, slope) of the linear regression at the relevant scale between relative area for the three media of grit blasting and the two methods of relative area calculation (Patchwork, Sdr) obtained by bootstrap on residuals. The red frame is a zoom with ellipses of confidence at 95%.</p>
Full article ">Figure A1
<p>Surface topographies of blasted surface using the medium G 100 at (<b>a</b>) 2 bar of pressure, (<b>b</b>) 4 bar of pressure, and (<b>c</b>) 8 bar of pressure.</p>
Full article ">Figure A2
<p>Surface topographies of blasted surface using the medium G 250 at (<b>a</b>) 2 bar of pressure, (<b>b</b>) 4 bar of pressure, and (<b>c</b>) 8 bar of pressure.</p>
Full article ">Figure A3
<p>Surface topographies of blasted surface using the medium C 300 at (<b>a</b>) 2 bar of pressure, (<b>b</b>) 4 bar of pressure, and (<b>c</b>) 8 bar of pressure.</p>
Full article ">
19 pages, 11512 KiB  
Article
Finite-Time Synchronization of Fractional-Order Complex-Valued Multi-Layer Network via Adaptive Quantized Control Under Deceptive Attacks
by Lulu Xu, Juan Yu, Cheng Hu, Kailong Xiong and Tingting Shi
Fractal Fract. 2025, 9(1), 47; https://doi.org/10.3390/fractalfract9010047 - 17 Jan 2025
Viewed by 504
Abstract
This article investigates the problem of finite-time synchronization of fractional-order complex-valued random multi-layer networks without decomposing them into two real-valued systems. Firstly, by promoting real-valued signum functions, sign functions on the complex-valued domain are introduced. Simultaneously, quantization functions in the complex-valued domain are [...] Read more.
This article investigates the problem of finite-time synchronization of fractional-order complex-valued random multi-layer networks without decomposing them into two real-valued systems. Firstly, by promoting real-valued signum functions, sign functions on the complex-valued domain are introduced. Simultaneously, quantization functions in the complex-valued domain are also introduced, and several related formulas for sign functions and quantization functions in complex-valued domain are established. Under the framework of the given sign function and quantization function, an adaptive quantized control scheme with or without deception attacks is designed. According to the finite-time theorem, Lyapunov function, and graph theory methods, some sufficient criteria for realizing finite-time synchronization in complex-valued fractional-order multi-layer networks have been obtained. Furthermore, the setting time of finite-time synchronization is effectively evaluated. Eventually, the reliability of our results and the practicality of control strategies are verified through numerical examples. Full article
Show Figures

Figure 1

Figure 1
<p>AQC loop under DPAs.</p>
Full article ">Figure 2
<p>The image trajectory of <math display="inline"><semantics> <mrow> <msup> <mi>s</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>The image trajectory of <math display="inline"><semantics> <mrow> <msup> <mi>s</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Topology of system (<a href="#FD24-fractalfract-09-00047" class="html-disp-formula">24</a>).</p>
Full article ">Figure 5
<p>FITS error <math display="inline"><semantics> <mrow> <msubsup> <mi>ϵ</mi> <mi>????</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under AQC (<a href="#FD4-fractalfract-09-00047" class="html-disp-formula">4</a>).</p>
Full article ">Figure 6
<p>FITS error <math display="inline"><semantics> <mrow> <msubsup> <mi>ϵ</mi> <mi>????</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under AQC (<a href="#FD4-fractalfract-09-00047" class="html-disp-formula">4</a>).</p>
Full article ">Figure 7
<p>The trajectory evolution of gains <math display="inline"><semantics> <mrow> <msubsup> <mi>k</mi> <mi>????</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under AQC (<a href="#FD4-fractalfract-09-00047" class="html-disp-formula">4</a>).</p>
Full article ">Figure 8
<p>The attack random switch signal.</p>
Full article ">Figure 9
<p>FITS error <math display="inline"><semantics> <mrow> <msubsup> <mi>ϵ</mi> <mi>????</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under AQC (<a href="#FD18-fractalfract-09-00047" class="html-disp-formula">18</a>).</p>
Full article ">Figure 10
<p>FITS error <math display="inline"><semantics> <mrow> <msubsup> <mi>ϵ</mi> <mi>????</mi> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under AQC (<a href="#FD18-fractalfract-09-00047" class="html-disp-formula">18</a>).</p>
Full article ">Figure 11
<p>The trajectory evolution of function <math display="inline"><semantics> <mrow> <msubsup> <mover accent="true"> <mi>k</mi> <mo stretchy="false">˜</mo> </mover> <mi>????</mi> <mrow> <mo>(</mo> <mi>r</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under AQC (<a href="#FD18-fractalfract-09-00047" class="html-disp-formula">18</a>).</p>
Full article ">
18 pages, 337 KiB  
Article
Existence Results of Nonlocal Fractional Integro-Neutral Differential Inclusions with Infinite Delay
by Madeaha Alghanmi and Shahad Alqurayqiri
Fractal Fract. 2025, 9(1), 46; https://doi.org/10.3390/fractalfract9010046 - 16 Jan 2025
Viewed by 565
Abstract
This article addresses a new class of delayed fractional multivalued problems complemented with nonlocal boundary conditions. In view of infinite delay theory, we convert the inclusion problem into a fixed-point multivalued problem, defined in an appropriate phase space. Then, sufficient criteria for the [...] Read more.
This article addresses a new class of delayed fractional multivalued problems complemented with nonlocal boundary conditions. In view of infinite delay theory, we convert the inclusion problem into a fixed-point multivalued problem, defined in an appropriate phase space. Then, sufficient criteria for the existence of solutions are established for the convex case of the given problem using the nonlinear Leray–Schauder alternative type, while Covitz and Nadler’s theorem is applied for nonconvex multivalued functions. Finally, the results are illustrated through examples. Full article
(This article belongs to the Section General Mathematics, Analysis)
17 pages, 1608 KiB  
Article
Dynamics of Fractional-Order Three-Species Food Chain Model with Vigilance Effect
by Vinoth Seralan, Rajarathinam Vadivel, Nallappan Gunasekaran and Taha Radwan
Fractal Fract. 2025, 9(1), 45; https://doi.org/10.3390/fractalfract9010045 - 16 Jan 2025
Viewed by 570
Abstract
This study examines a Caputo-type fractional-order food chain model, considering the Holling type II functional response with the vigilance effect. The model explores the interaction dynamics of the food chain model, which consists of prey, middle predators, and top predators. Additionally, habitat complexity [...] Read more.
This study examines a Caputo-type fractional-order food chain model, considering the Holling type II functional response with the vigilance effect. The model explores the interaction dynamics of the food chain model, which consists of prey, middle predators, and top predators. Additionally, habitat complexity is integrated into the model, which is assumed to reduce predation rates by lowering the encounter rates between predators and prey. All possible feasible equilibrium points are determined and the stability of our proposed model is explored near the equilibrium points. To support the analytical findings, numerical simulation results are given in terms of time series, phase portraits, and bifurcation diagrams. It is discovered that the proposed model can become more stable under a fractional-order derivative. Moreover, the interplay between the vigilance effect and habitat complexity is shown to influence the existence of stable and periodic dynamics. Full article
Show Figures

Figure 1

Figure 1
<p>Chaotic time series (<b>a</b>–<b>c</b>) and phase portrait (<b>d</b>) for Model (<a href="#FD3-fractalfract-09-00045" class="html-disp-formula">3</a>) with <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. All other essential parameters are given in (<a href="#FD17-fractalfract-09-00045" class="html-disp-formula">17</a>).</p>
Full article ">Figure 2
<p>Different phase portraits for Model (<a href="#FD3-fractalfract-09-00045" class="html-disp-formula">3</a>) for different values of <math display="inline"><semantics> <mi>α</mi> </semantics></math>, for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>, which is chaotic in (<b>a</b>), for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math>, which is also chaotic in (<b>b</b>), for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.85</mn> </mrow> </semantics></math>, which shows a periodic orbit in (<b>c</b>), and for <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.8</mn> </mrow> </semantics></math>, which is asymptotically stable state in (<b>d</b>).</p>
Full article ">Figure 3
<p>One-parameter bifurcation diagram for Model (<a href="#FD3-fractalfract-09-00045" class="html-disp-formula">3</a>) as fractional order <math display="inline"><semantics> <mi>α</mi> </semantics></math> varies within range <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>0.85</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. Diagram illustrates transition in system dynamics, highlighting changes in periodic from chaotic dynamics as <math display="inline"><semantics> <mi>α</mi> </semantics></math> approaches 0.85. (<b>a</b>), (<b>b</b>), and (<b>c</b>) are the sizes of the populations <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 4
<p>One-parameter bifurcation diagram for Model (<a href="#FD3-fractalfract-09-00045" class="html-disp-formula">3</a>) as parameter <math display="inline"><semantics> <msub> <mi>r</mi> <mn>1</mn> </msub> </semantics></math> varies within range <math display="inline"><semantics> <mrow> <mo>(</mo> <mn>2</mn> <mo>,</mo> <mn>5</mn> <mo>)</mo> </mrow> </semantics></math>. Diagram depicts evolution of system’s dynamic behavior, showcasing changes in stability and bifurcation points as <math display="inline"><semantics> <msub> <mi>r</mi> <mn>1</mn> </msub> </semantics></math> increases. (<b>a</b>), (<b>b</b>), and (<b>c</b>) are the sizes of the populations <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 5
<p>One-parameter bifurcation diagram for Model (<a href="#FD3-fractalfract-09-00045" class="html-disp-formula">3</a>) by varying <math display="inline"><semantics> <mrow> <mi>σ</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> </semantics></math>. Results demonstrate that larger values of <math display="inline"><semantics> <mi>σ</mi> </semantics></math> lead to more stable dynamics in system. (<b>a</b>), (<b>b</b>), and (<b>c</b>) are the sizes of the populations <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 6
<p>One-parameter bifurcation for Model (<a href="#FD3-fractalfract-09-00045" class="html-disp-formula">3</a>) by varying <math display="inline"><semantics> <mrow> <mi>ρ</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.8</mn> <mo>)</mo> </mrow> </semantics></math>. The results indicate that increasing <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> enhances the stability of the model, with larger values of <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> leading to greater stability.(<b>a</b>), (<b>b</b>), and (<b>c</b>) are the sizes of the populations <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">Figure 7
<p>One-parameter bifurcation for Model (<a href="#FD3-fractalfract-09-00045" class="html-disp-formula">3</a>) by varying <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>∈</mo> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>0.07</mn> <mo>)</mo> </mrow> </semantics></math>. The results indicate that increasing <math display="inline"><semantics> <mi>γ</mi> </semantics></math> enhances the stability of the model, with larger values of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> leading to stable dynamics. (<b>a</b>), (<b>b</b>), and (<b>c</b>) are the sizes of the populations <math display="inline"><semantics> <msub> <mi>x</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>x</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>x</mi> <mn>3</mn> </msub> </semantics></math>.</p>
Full article ">
18 pages, 4101 KiB  
Article
Design and Optimization Application of Cut Blasting Parameters for One-Time Completion of Blind Shaft
by Yifeng Zhang, Yongsheng Jia, Nan Jiang, Quanming Xie, Lin Yuan, Yongbo Wu and Zehui Xu
Fractal Fract. 2025, 9(1), 44; https://doi.org/10.3390/fractalfract9010044 - 16 Jan 2025
Viewed by 534
Abstract
The one-time completion blasting technology for blind shafts is widely used in underground mining, for safety reasons. Efficient blind shaft excavation relies on reasonable cutting blasting technology. To optimize blasting parameters, the impact of explosion stress waves and gases on rock fragmentation is [...] Read more.
The one-time completion blasting technology for blind shafts is widely used in underground mining, for safety reasons. Efficient blind shaft excavation relies on reasonable cutting blasting technology. To optimize blasting parameters, the impact of explosion stress waves and gases on rock fragmentation is quantitatively analyzed using explosion stress wave theory. A calculation model for the radius R1 of the crushed zone and the radius R2 of the fractured zone in rock under the combined action of borehole cutting stress waves and blasting gases is derived and established. Combined with practical engineering examples and the determination method of compensation coefficient Cf, three types of linear cutting patterns, namely six-hole bucket cutting, seven-hole bucket cutting, and nine-hole bucket cutting, are designed. The post-blasting cavity volume and crack length of these three different cutting methods are calculated and analyzed using numerical simulation. Quantitative description of the distribution pattern of blasting-induced cracks in the simulation results of three cutting methods using the box-counting fractal dimension method are presented. Based on this analysis, the nine-hole bucket cutting is selected as the optimal scheme and validated through field application of cutting blasting. The results indicate that the nine-hole bucket cutting blasting scheme for one-time completion of blind shafts, with a designed hole depth of 8 m and a blasthole utilization rate of 93.7%, is an efficient and reasonable technical solution. Full article
Show Figures

Figure 1

Figure 1
<p>Schematic diagram of mine locations.</p>
Full article ">Figure 2
<p>Layout diagram of cutting blastholes (mm). (<b>a</b>) Six-hole tubular cutting. (<b>b</b>) Seven-hole tubular cutting. (<b>c</b>) Nine-hole tubular cutting.</p>
Full article ">Figure 3
<p>Numerical simulation solution process.</p>
Full article ">Figure 4
<p>Numerical model of six-hole tubular cutting (mm).</p>
Full article ">Figure 5
<p>Rock damage process in different forms of cutting blasthole blasting. (<b>a</b>) Rock damage process in six-hole bucket-shaped cut blasting. (<b>b</b>) Rock damage process in seven-hole bucket-shaped cut blasting. (<b>c</b>) Rock damage process in nine-hole bucket-shaped cut blasting.</p>
Full article ">Figure 6
<p>Damage scope of rock in different forms of cutting blastholes. (<b>a</b>) Rock damage scope for six-hole bucket-shaped cut blasting. (<b>b</b>) Rock damage scope for seven-hole bucket-shaped cut blasting. (<b>c</b>) Rock damage scope for nine-hole bucket-shaped cut blasting.</p>
Full article ">Figure 7
<p>Comparison of theoretical and simulation results for the length of rock-mass fracture zone.</p>
Full article ">Figure 8
<p>MATLAB program flow chart.</p>
Full article ">Figure 9
<p>Fractal dimension of blast-induced cracks under different cutting methods. (<b>a</b>) Fractal dimension of six-hole bucket-shaped cutting. (<b>b</b>) Fractal dimension of seven-hole bucket-shaped cutting. (<b>c</b>) Fractal dimension of nine-hole bucket-shaped cutting.</p>
Full article ">Figure 10
<p>Layout of blastholes for full-face blasting at the site.</p>
Full article ">Figure 11
<p>Charging structure diagram for full-face blasting for one-time well completion.</p>
Full article ">Figure 12
<p>On-site photograph showing the blasting effect of a one-time full-section well completion.</p>
Full article ">
9 pages, 495 KiB  
Article
Reconstructing the Heat Transfer Coefficient in the Inverse Fractional Stefan Problem
by Agata Chmielowska, Rafał Brociek and Damian Słota
Fractal Fract. 2025, 9(1), 43; https://doi.org/10.3390/fractalfract9010043 - 16 Jan 2025
Viewed by 516
Abstract
This paper presents an algorithm for solving the inverse fractional Stefan problem. The considered inverse problem consists of determining the heat transfer coefficient at one of the boundaries of the considered region. The additional information necessary for solving the inverse problem is the [...] Read more.
This paper presents an algorithm for solving the inverse fractional Stefan problem. The considered inverse problem consists of determining the heat transfer coefficient at one of the boundaries of the considered region. The additional information necessary for solving the inverse problem is the set of temperature values in selected points of the region. The fractional derivative with respect to time used in the considered Stefan problem is of the Caputo type. The direct problem was solved by using the alternating phase truncation method adapted to the model with the fractional derivative. To solve the inverse problem, the ant colony algorithm was used. This paper contains an example illustrating the accuracy and stability of the presented algorithm. Full article
Show Figures

Figure 1

Figure 1
<p>Scheme of the two-phase problem.</p>
Full article ">Figure 2
<p>The exact and disturbed input data presented for the measurements taken every <math display="inline"><semantics> <mrow> <mn>1</mn> <mspace width="0.166667em"/> </mrow> </semantics></math>s.</p>
Full article ">Figure 3
<p>The reconstructed values of the heat transfer coefficient <span class="html-italic">h</span> for the exact measurement data (<b>a</b>) and data disturbed by the 2% error (<b>b</b>) for different numbers of measurements.</p>
Full article ">Figure 4
<p>The temperature course at the measurement point for the measurements disturbed by the 1% error (<b>a</b>) and 2% error (<b>b</b>) (measurements taken every <math display="inline"><semantics> <mrow> <mn>1</mn> <mspace width="0.166667em"/> </mrow> </semantics></math>s; solid line—the exact course; dotted line—the reconstructed course).</p>
Full article ">Figure 5
<p>The temperature distribution at time <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>=</mo> <mn>100</mn> <mspace width="0.166667em"/> </mrow> </semantics></math>s for the exact measurements (<b>a</b>) and the measurements disturbed by the 1% error (<b>b</b>) (measurements taken every <math display="inline"><semantics> <mrow> <mn>1</mn> <mspace width="0.166667em"/> </mrow> </semantics></math>s; solid line—the exact course; dotted line—the reconstructed course).</p>
Full article ">
14 pages, 278 KiB  
Article
Existence and Uniqueness Results for a Class of Fractional Integro-Stochastic Differential Equations
by Ayed. R. A. Alanzi, Shokrya S. Alshqaq, Raouf Fakhfakh and Abdellatif Ben Makhlouf
Fractal Fract. 2025, 9(1), 42; https://doi.org/10.3390/fractalfract9010042 - 15 Jan 2025
Viewed by 519
Abstract
The objective of this paper is to demonstrate the existence and uniqueness (EU) of solutions to a class of Fractional Integro-Stochastic Differential Equations (FISDEs) by utilizing the fixed-point technique (FPT) and stochastic techniques. Additionally, the paper proves the continuous dependence (CD) of solutions [...] Read more.
The objective of this paper is to demonstrate the existence and uniqueness (EU) of solutions to a class of Fractional Integro-Stochastic Differential Equations (FISDEs) by utilizing the fixed-point technique (FPT) and stochastic techniques. Additionally, the paper proves the continuous dependence (CD) of solutions on the initial data. We examine the Hyers–Ulam stability (HUS) of FISDEs by applying Gronwall inequalities. Two theoretical examples are presented to demonstrate our findings. Full article
(This article belongs to the Section General Mathematics, Analysis)
29 pages, 5470 KiB  
Article
Discrete-Time Design of Fractional Delay-Based Repetitive Controller with Sliding Mode Approach for Uncertain Linear Systems with Multiple Periodic Signals
by Edi Kurniawan, Azka M. Burrohman, Purwowibowo Purwowibowo, Sensus Wijonarko, Tatik Maftukhah, Jalu A. Prakosa, Dadang Rustandi, Enggar B. Pratiwi and Amaliyah Az-Zukhruf
Fractal Fract. 2025, 9(1), 41; https://doi.org/10.3390/fractalfract9010041 - 15 Jan 2025
Viewed by 558
Abstract
In this paper, a discrete-time design of a fractional internal model-based repetitive controller with a sliding mode approach is presented for uncertain linear systems subject to repetitive trajectory and periodic disturbance. The proposed algorithm, named a fractional delay-based repetitive sliding mode controller (FD-RSMC), [...] Read more.
In this paper, a discrete-time design of a fractional internal model-based repetitive controller with a sliding mode approach is presented for uncertain linear systems subject to repetitive trajectory and periodic disturbance. The proposed algorithm, named a fractional delay-based repetitive sliding mode controller (FD-RSMC), aims to enhance tracking accuracy, transient response, and robustness against parametric variations beyond what is offered by conventional repetitive controllers. First, a fractional delay-based repetitive controller (FD-RC) that allows the periodic delay steps to be noninteger is presented to improve the trajectory tracking accuracy and good disturbance compensation of multiple periodic signals. Second, a sliding mode control (SMC) with a discrete-time reaching law is systematically incorporated into FD-RC to improve transient response, especially during the learning period of FD-RC, and also to provide system robustness against model uncertainties. Finally, the stability proof of the closed-loop system with the proposed controller is assessed based on a delayed-sliding mode-reaching condition. Finally, comparative simulation studies are presented to demonstrate the superior performance of the proposed controller. Full article
(This article belongs to the Special Issue Applications of Fractional-Order Systems to Automatic Control)
Show Figures

Figure 1

Figure 1
<p>Block diagram of two-period RC embedding the delay term <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">D</mi> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>Magnitude-frequency characteristics: (<b>a</b>) single-period RC, (<b>b</b>) two-period RC.</p>
Full article ">Figure 3
<p>Realization of delay term <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="sans-serif">D</mi> <mi mathvariant="sans-serif">R</mi> </msub> <mrow> <mo>(</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>Plot of the saturation function (<a href="#FD37-fractalfract-09-00041" class="html-disp-formula">37</a>).</p>
Full article ">Figure 5
<p>Block diagram of the proposed FD-RSMC scheme.</p>
Full article ">Figure 6
<p>(<b>a</b>) Desired repetitive trajectory <math display="inline"><semantics> <msub> <mi>r</mi> <mi>k</mi> </msub> </semantics></math> and (<b>b</b>) periodic input disturbance <math display="inline"><semantics> <msub> <mi>f</mi> <mi>k</mi> </msub> </semantics></math>.</p>
Full article ">Figure 7
<p>Desired trajectory <math display="inline"><semantics> <msub> <mi>r</mi> <mi>k</mi> </msub> </semantics></math> and output <math display="inline"><semantics> <msub> <mi>y</mi> <mi>k</mi> </msub> </semantics></math> with FD-RSMC.</p>
Full article ">Figure 8
<p>(<b>a</b>) Evolution of the tracking error <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> and sliding surface <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">s</mi> <mi>k</mi> </msub> </semantics></math> with FD-RSMC (<b>b</b>) <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">s</mi> <mi>k</mi> </msub> </semantics></math> during the steady-state period.</p>
Full article ">Figure 9
<p>(<b>a</b>) Tracking errors <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> of FD-RSMC for different order approximations (<b>b</b>) <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> during the steady-state period.</p>
Full article ">Figure 10
<p>Desired trajectory <math display="inline"><semantics> <msub> <mi>r</mi> <mi>k</mi> </msub> </semantics></math> and output <math display="inline"><semantics> <msub> <mi>y</mi> <mi>k</mi> </msub> </semantics></math> with ID-RSMC.</p>
Full article ">Figure 11
<p>(<b>a</b>) Evolution of the tracking error <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> and sliding surface <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">s</mi> <mi>k</mi> </msub> </semantics></math> with ID-RSMC (<b>b</b>) <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi mathvariant="sans-serif">s</mi> <mi>k</mi> </msub> </semantics></math> during the steady-state period.</p>
Full article ">Figure 12
<p>Magnitude-frequency characteristics of integer- and fractional-based internal models.</p>
Full article ">Figure 13
<p>Desired trajectory <math display="inline"><semantics> <msub> <mi>r</mi> <mi>k</mi> </msub> </semantics></math> and output <math display="inline"><semantics> <msub> <mi>y</mi> <mi>k</mi> </msub> </semantics></math> with FD-RC and ID-RC.</p>
Full article ">Figure 14
<p>Evolution of the tracking error <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> with FD-RC and ID-RC.</p>
Full article ">Figure 15
<p>Tracking error <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> of the system under parameter variations: (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> FD-RSMC; (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> ID-RSMC; (<b>c</b>) <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> FD-RSMC; (<b>d</b>) <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> ID-RSMC; (<b>e</b>) <math display="inline"><semantics> <mrow> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math> FD-RSMC; (<b>f</b>) <math display="inline"><semantics> <mrow> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math> ID-RSMC.</p>
Full article ">Figure 16
<p>Tracking error <math display="inline"><semantics> <msub> <mi>e</mi> <mi>k</mi> </msub> </semantics></math> of the system under parameter variations: (<b>a</b>) <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> FD-RC; (<b>b</b>) <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> ID-RC; (<b>c</b>) <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> FD-RC; (<b>d</b>) <math display="inline"><semantics> <mrow> <mn>20</mn> <mo>%</mo> </mrow> </semantics></math> ID-RC; (<b>e</b>) <math display="inline"><semantics> <mrow> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math> FD-RC; (<b>f</b>) <math display="inline"><semantics> <mrow> <mn>30</mn> <mo>%</mo> </mrow> </semantics></math> ID-RC.</p>
Full article ">
24 pages, 21684 KiB  
Article
An Effective Iterative Process Utilizing Transcendental Sine Functions for the Generation of Julia and Mandelbrot Sets
by Khairul Habib Alam, Yumnam Rohen, Anita Tomar, Naeem Saleem, Maggie Aphane and Asima Razzaque
Fractal Fract. 2025, 9(1), 40; https://doi.org/10.3390/fractalfract9010040 - 15 Jan 2025
Viewed by 734
Abstract
This study presents an innovative iterative method designed to approximate common fixed points of generalized contractive mappings. We provide theorems that confirm the convergence and stability of the proposed iteration scheme, further illustrated through examples and visual demonstrations. Moreover, we apply s-convexity [...] Read more.
This study presents an innovative iterative method designed to approximate common fixed points of generalized contractive mappings. We provide theorems that confirm the convergence and stability of the proposed iteration scheme, further illustrated through examples and visual demonstrations. Moreover, we apply s-convexity to the iteration procedure to construct orbits under convexity conditions, and we present a theorem that determines the condition when a sequence diverges to infinity, known as the escape criterion, for the transcendental sine function sin(um)αu+β, where u,α,βC and m2. Additionally, we generate chaotic fractals for this orbit, governed by escape criteria, with numerical examples implemented using MATHEMATICA software. Visual representations are included to demonstrate how various parameters influence the coloration and dynamics of the fractals. Furthermore, we observe that enlarging the Mandelbrot set near its petal edges reveals the Julia set, indicating that every point in the Mandelbrot set contains substantial data corresponding to the Julia set’s structure. Full article
(This article belongs to the Special Issue Fixed Point Theory and Fractals)
Show Figures

Figure 1

Figure 1
<p>The surface above illustrates the right-hand-side term, while the surface below represents the left-hand-side term of the inequality in the general contractive condition.</p>
Full article ">Figure 2
<p>Convergence of iterations.</p>
Full article ">Figure 3
<p>The surface above illustrates the right-hand-side term, while the surface below represents the left-hand-side term of the inequality in the general contractive condition.</p>
Full article ">Figure 4
<p>Convergence of iterations.</p>
Full article ">Figure 5
<p>(<b>i</b>–<b>vi</b>) Effect of <span class="html-italic">m</span> on fractals as a Julia set.</p>
Full article ">Figure 6
<p>(<b>i</b>–<b>vi</b>) Effect of <math display="inline"><semantics> <mi>α</mi> </semantics></math> on fractals as Julia sets.</p>
Full article ">Figure 7
<p>(<b>i</b>–<b>iii</b>) Effect of <math display="inline"><semantics> <mi>β</mi> </semantics></math> on fractals as Julia sets.</p>
Full article ">Figure 8
<p>(<b>i</b>–<b>iii</b>) Effect of <span class="html-italic">s</span> on fractals as Julia sets.</p>
Full article ">Figure 9
<p>(<b>i</b>–<b>iii</b>) Effect of <span class="html-italic">a</span> on fractals as Julia sets.</p>
Full article ">Figure 10
<p>(<b>i</b>–<b>iii</b>) Effect of <math display="inline"><semantics> <mrow> <msub> <mi>γ</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>γ</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>γ</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>γ</mi> <mn>4</mn> </msub> </mrow> </semantics></math> on fractals as Julia sets.</p>
Full article ">Figure 11
<p>(<b>i</b>–<b>vi</b>) Effect of random choice of parameters on fractals as Julia sets.</p>
Full article ">Figure 12
<p>(<b>i</b>–<b>vi</b>) Effect of <span class="html-italic">m</span> on fractals as Mandelbrot sets.</p>
Full article ">Figure 13
<p>(<b>i</b>–<b>vi</b>) Effect of <math display="inline"><semantics> <mi>α</mi> </semantics></math> on fractals as Mandelbrot sets.</p>
Full article ">Figure 14
<p>(<b>i</b>–<b>vi</b>) Effect of <span class="html-italic">s</span> on fractals as Mandelbrot set.</p>
Full article ">Figure 15
<p>(<b>i</b>–<b>iii</b>) Effect of <span class="html-italic">a</span> on fractals as Mandelbrot sets.</p>
Full article ">Figure 16
<p>The Figure shows a source code for generating Julia set.</p>
Full article ">Figure 17
<p>The Figure shows a source code for generating Mandelbrot set.</p>
Full article ">
21 pages, 639 KiB  
Article
Finite-Time Cluster Synchronization of Fractional-Order Complex-Valued Neural Networks Based on Memristor with Optimized Control Parameters
by Qi Chang, Rui Wang and Yongqing Yang
Fractal Fract. 2025, 9(1), 39; https://doi.org/10.3390/fractalfract9010039 - 14 Jan 2025
Viewed by 536
Abstract
The finite-time cluster synchronization (FTCS) of fractional-order complex-valued (FOCV) neural network has attracted wide attention. It is inconvenient and difficult to decompose complex-valued neural networks into real parts and imaginary parts. This paper addresses the FTCS of coupled memristive neural networks (CMNNs), which [...] Read more.
The finite-time cluster synchronization (FTCS) of fractional-order complex-valued (FOCV) neural network has attracted wide attention. It is inconvenient and difficult to decompose complex-valued neural networks into real parts and imaginary parts. This paper addresses the FTCS of coupled memristive neural networks (CMNNs), which are FOCV systems with a time delay. A controller is designed with a complex-valued sign function to achieve FTCS using a non-decomposition approach, which eliminates the need to separate the complex-valued system into its real and imaginary components. By applying fractional-order stability theory, some conditions are derived for FTCS based on the proposed controller. The settling time, related to the system’s initial values, can be computed using the Mittag–Leffler function. We further investigate the optimization of control parameters by formulating an optimization model, which is solved using particle swarm optimization (PSO) to determine the optimal control parameters. Finally, a numerical example and a comparative experiment are both provided to verify the theoretical results and optimization method. Full article
Show Figures

Figure 1

Figure 1
<p>The flow chart of control parameters selection algorithm based on PSO.</p>
Full article ">Figure 2
<p>The 2D state curves of the leaders <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> of 2 clusters in Example 1.</p>
Full article ">Figure 3
<p>The topology of 9 neurons of the network (<a href="#FD6-fractalfract-09-00039" class="html-disp-formula">6</a>) in Example 1.</p>
Full article ">Figure 4
<p>The stable evolution of the first dimensional state of the leaders <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>l</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and follower-neurons <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in Example 1, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>The stable evolution of the second dimensional state of the leaders <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mrow> <mi>l</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and follower-neurons <math display="inline"><semantics> <mrow> <msub> <mi>z</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in Example 1, <math display="inline"><semantics> <mrow> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>The stable evolutions of 9 neurons’ errors <math display="inline"><semantics> <mrow> <msub> <mi>e</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in Example 1, <math display="inline"><semantics> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mo>⋯</mo> <mo>,</mo> <mn>9</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 7
<p>The evolution of optimization target function <span class="html-italic">J</span> in Example 1.</p>
Full article ">Figure 8
<p>The topology of 14 neurons of the network (<a href="#FD50-fractalfract-09-00039" class="html-disp-formula">50</a>) in Example 2.</p>
Full article ">
17 pages, 2621 KiB  
Article
Comparative Studies of Nonlinear Models and Their Applications to Magmatic Evolution and Crustal Growth of the Huai’an Terrane in the North China Craton
by Qiuming Cheng and Min Gao
Fractal Fract. 2025, 9(1), 38; https://doi.org/10.3390/fractalfract9010038 - 14 Jan 2025
Viewed by 546
Abstract
Power-law, inverse exponential and logarithmic models are widely used as empirical tools to describe anomalies in spatial and temporal geodynamic processes. However, the lack of clear interpretation of the relationships and distinctions among these models often makes their selection challenging, leaving them as [...] Read more.
Power-law, inverse exponential and logarithmic models are widely used as empirical tools to describe anomalies in spatial and temporal geodynamic processes. However, the lack of clear interpretation of the relationships and distinctions among these models often makes their selection challenging, leaving them as empirical tools to be validated by data. This paper introduces these nonlinear functions derived from a unified differential equation, with parameters that reflect their relative nonlinearities and singularities, enabling their comparative application. By applying these functions to analyze magmatic events of the Huai’an Terrane, this study reveals two major crustal growth and reworking events between 2.6 and 1.7 Ga, each exhibiting distinctive nonlinear characteristics. The power-law function highlights strong nonlinearity and singularity during phases of intense magmatic activity, while logarithmic and exponential functions effectively characterize transitions between different tectonic processes. Geochemical data, including U-Pb zircon dating and Lu-Hf isotopic analyses, further validate the models by delineating distinct phases of crustal growth and reworking within the Trans-North China Orogen. The findings help connect the anomalies of frequency of magmatic events with the tectonic processes, providing important insights into the evolution processes of the North China Craton. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

Figure 1
<p>Illustration of curves drawn based on four types of functions: linear, logarithmic, exponential and power-law. These functions were fitted to a dataset using least squares (LS) for visualization purposes.</p>
Full article ">Figure 2
<p>Granite sample locations in the TNCO of the NCC. The insert shows the geological framework of the NCC (after [<a href="#B18-fractalfract-09-00038" class="html-bibr">18</a>]). Triangles and dots represent granite samples from this paper and published papers, respectively. Abbreviations for metamorphic complexes: Chengde (CD), North Hebei (NH), Xuanhua (XH), Huai’an (HA), Hengshan (HS), Wutai (WT), Fuping (FP), Lüliang (LL), Zanhuang (ZH), Zhongtiao (ZT), Taihua (TH), Dengfeng (DF), Jining (JN), Wulashan-Daqingshan (WD), Qianlishan (QL), and Helanshan (HL).</p>
Full article ">Figure 3
<p>Histograms of granite magmatic zircon age distribution in the TNCO with age bins of 20, 25, 30, 35 and 40 Ma. Color bands present the three ranges with peaks at 2.5, 2.08 and 1.84 Ga.</p>
Full article ">Figure 4
<p>Analysis results of zircon age anomalies of granitic magmatism centered around 2.53 Ga in the TNCO: (<b>a</b>,<b>d</b>,<b>g</b>) the average age density results and function fitting for intervals with a bin size of 20 Ma; (<b>b</b>,<b>e</b>,<b>h</b>) the average age density results for intervals with a bin size of 30 Ma; and (<b>c</b>,<b>f</b>,<b>i</b>) the average age density results for intervals with a bin size of 40 Ma. Each set focuses on both sides of the peak, the left side and the right side of the peak, respectively. Blue dots represent the average age density and dashed red lines for fitted curves according to nonlinear models by LS method.</p>
Full article ">Figure 5
<p>Analysis results of zircon age anomalies of granitic magmatism centered around 2.08 Ga in the TNCO: (<b>a</b>,<b>d</b>,<b>g</b>) the average age density results and function fitting for intervals with a bin size of 20 Ma; (<b>b</b>,<b>e</b>,<b>h</b>) the average age density results for intervals with a bin size of 30 Ma; and (<b>c</b>,<b>f</b>,<b>i</b>) the average age density results for intervals with a bin size of 40 Ma. Each set focuses on both sides of the peak, the left side and the right side of the peak, respectively. Blue dots represent the average age density and dashed red lines for fitted curves according to nonlinear models by LS method.</p>
Full article ">Figure 6
<p>Analysis results of zircon age anomalies of granitic magmatism centered around 1.84 Ga in the TNCO: (<b>a</b>,<b>d</b>,<b>g</b>) the average age density results and function fitting for intervals with a bin size of 20 Ma; (<b>b</b>,<b>e</b>,<b>h</b>) the average age density results for intervals with a bin size of 30 Ma; and (<b>c</b>,<b>f</b>,<b>i</b>) the average age density results for intervals with a bin size of 40 Ma. Each set focuses on both sides of the peak, the left side and the right side of the peak, respectively. Blue dots represent the average age density and dashed red lines for fitted curves according to nonlinear models by LS method.</p>
Full article ">Figure 7
<p>Schematic diagrams illustrating models of crustal growth and crustal reworking.</p>
Full article ">
17 pages, 345 KiB  
Article
Numerical Algorithm for Coupled Fixed Points in Normed Spaces with Applications to Fractional Differential Equations and Economics
by Lifang Guo, Salha Alshaikey, Abeer Alshejari, Muhammad Din and Umar Ishtiaq
Fractal Fract. 2025, 9(1), 37; https://doi.org/10.3390/fractalfract9010037 - 14 Jan 2025
Viewed by 579
Abstract
This paper introduces interpolative enriched cyclic Reich–Rus–Ćirić operators in normed spaces, expanding existing contraction principles by integrating interpolation and cyclic conditions. This class of operators addresses mappings with discontinuities or non-self mappings, enhancing the applicability of fixed-point theory to more complex problems. This [...] Read more.
This paper introduces interpolative enriched cyclic Reich–Rus–Ćirić operators in normed spaces, expanding existing contraction principles by integrating interpolation and cyclic conditions. This class of operators addresses mappings with discontinuities or non-self mappings, enhancing the applicability of fixed-point theory to more complex problems. This class of operators expands on existing cyclic contractions, including interpolative Kannan mappings, interpolative Reich–Rus–Ćirić contractions, and other known contractions in the literature. We demonstrate the existence and uniqueness of fixed points for these operators and provide an example to illustrate our findings. Moreover, we discuss the applications of our results in solving nonlinear integral equations. Furthermore, we introduce the idea of a coupled interpolative enriched cyclic Reich–Rus–Ćirić operator and establish the existence of a strongly coupled fixed-point theorem for this contraction. Finally, we provide an application to fractional differential equations to show the validity of the main result. Full article
38 pages, 16379 KiB  
Article
Hyperbolic Sine Function Control-Based Finite-Time Bipartite Synchronization of Fractional-Order Spatiotemporal Networks and Its Application in Image Encryption
by Lvming Liu, Haijun Jiang, Cheng Hu, Haizheng Yu, Siyu Chen, Yue Ren, Shenglong Chen and Tingting Shi
Fractal Fract. 2025, 9(1), 36; https://doi.org/10.3390/fractalfract9010036 - 13 Jan 2025
Viewed by 562
Abstract
This work is devoted to the hyperbolic sine function (HSF) control-based finite-time bipartite synchronization of fractional-order spatiotemporal networks and its application in image encryption. Initially, the addressed networks adequately take into account the nature of anisotropic diffusion, i.e., the diffusion matrix can be [...] Read more.
This work is devoted to the hyperbolic sine function (HSF) control-based finite-time bipartite synchronization of fractional-order spatiotemporal networks and its application in image encryption. Initially, the addressed networks adequately take into account the nature of anisotropic diffusion, i.e., the diffusion matrix can be not only non-diagonal but also non-square, without the conservative requirements in plenty of the existing literature. Next, an equation transformation and an inequality estimate for the anisotropic diffusion term are established, which are fundamental for analyzing the diffusion phenomenon in network dynamics. Subsequently, three control laws are devised to offer a detailed discussion for HSF control law’s outstanding performances, including the swifter convergence rate, the tighter bound of the settling time and the suppression of chattering. Following this, by a designed chaotic system with multi-scroll chaotic attractors tested with bifurcation diagrams, Poincaré map, and Turing pattern, several simulations are pvorided to attest the correctness of our developed findings. Finally, a formulated image encryption algorithm, which is evaluated through imperative security tests, reveals the effectiveness and superiority of the obtained results. Full article
Show Figures

Figure 1

Figure 1
<p>(<b>a</b>) The strange attractor of system (40) at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>1.33</mn> </mrow> </semantics></math>. (<b>b</b>) The strange attractor of system (40) at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mo>−</mo> <mn>0.66</mn> </mrow> </semantics></math>. (<b>c</b>) The strange attractor of system (40) at <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 2
<p>(<b>a</b>) The spatiotemporal evolution of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) The spatiotemporal evolution of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) The spatiotemporal evolution of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 3
<p>(<b>a</b>) The Turing pattern of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) The Turing pattern of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) The Turing pattern of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 4
<p>(<b>a</b>) Bifurcation diagram. (<b>b</b>) Poincaré map: the projection on the plane is <math display="inline"><semantics> <mrow> <mn>5</mn> <mi>x</mi> <mo>−</mo> <mn>6.1</mn> <mi>y</mi> <mo>+</mo> <mn>0.92</mn> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>(<b>a</b>) Network topology. (<b>b</b>) The time evolutions of error <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> without control.</p>
Full article ">Figure 6
<p>(<b>a</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map. (<b>b</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map. (<b>c</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map.</p>
Full article ">Figure 7
<p>(<b>a</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under the control protocol (20).</p>
Full article ">Figure 9
<p>(<b>a</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map under control protocol (20). (<b>b</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map undercontrol protocol (20). (<b>c</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map undercontrol protocol (20).</p>
Full article ">Figure 10
<p>(<b>a</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under the control protocol (30).</p>
Full article ">Figure 12
<p>(<b>a</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map under control protocol (30). (<b>b</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map under control protocol (30). (<b>c</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>, with contour map under control protocol (30).</p>
Full article ">Figure 13
<p>(<b>a</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> under the control law (35).</p>
Full article ">Figure 15
<p>(<b>a</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map under control law (35). (<b>b</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map under control law (35). (<b>c</b>) The spatiotemporal evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> with contour map under control law (35).</p>
Full article ">Figure 16
<p>(<b>a</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>b</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>. (<b>c</b>) The time evolutions of <math display="inline"><semantics> <mrow> <msub> <mi>s</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p>
Full article ">Figure 17
<p>(<b>a</b>) The control inputs of the control law (35) in this work and [<a href="#B7-fractalfract-09-00036" class="html-bibr">7</a>]. (<b>b</b>) The synchronization errors in this work and [<a href="#B7-fractalfract-09-00036" class="html-bibr">7</a>]. (<math display="inline"><semantics> <mrow> <msub> <mi>U</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi>M</mi> <mrow> <mn>0</mn> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> are the controllor and error in [<a href="#B7-fractalfract-09-00036" class="html-bibr">7</a>], respectively).</p>
Full article ">Figure 18
<p>(<b>a</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mn>2</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>h</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>. (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>t</mi> <mo>∈</mo> <mo>[</mo> <mn>0</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mn>6</mn> <mo>]</mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mi>t</mi> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>h</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math>.</p>
Full article ">Figure 19
<p>The image encryption and decryption algorithm.</p>
Full article ">Figure 20
<p>(<b>a</b>) The plaintext image to be encrypted. (<b>b</b>) The content obtained via scanning the plaintext image. (<b>c</b>) The ciphertext image. (<b>d</b>) The decryption image.</p>
Full article ">Figure 21
<p>(<b>a</b>) The histogram of the plaintext image. (<b>b</b>) The histogram of the ciphertext image.</p>
Full article ">Figure 22
<p>(<b>a1</b>,<b>b1</b>,<b>c1</b>,<b>d1</b>): The scatter plots of adjacent horizontal, vertical, positive diagonal and counter-diagonal for plaintext image, respectively. (<b>a2</b>,<b>b2</b>,<b>c2</b>,<b>d2</b>): the scatter plots of adjacent horizontal, vertical, positive diagonal and counter diagonal for ciphertext image, respectively.</p>
Full article ">Figure 22 Cont.
<p>(<b>a1</b>,<b>b1</b>,<b>c1</b>,<b>d1</b>): The scatter plots of adjacent horizontal, vertical, positive diagonal and counter-diagonal for plaintext image, respectively. (<b>a2</b>,<b>b2</b>,<b>c2</b>,<b>d2</b>): the scatter plots of adjacent horizontal, vertical, positive diagonal and counter diagonal for ciphertext image, respectively.</p>
Full article ">Figure 23
<p>The decrypted image with <math display="inline"><semantics> <mrow> <msup> <mi>s</mi> <mn>0</mn> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msup> <mn>10</mn> <mrow> <mo>−</mo> <mn>14</mn> </mrow> </msup> <mo>,</mo> <mspace width="3.33333pt"/> <mn>0</mn> <mo>,</mo> <mspace width="3.33333pt"/> <mn>0</mn> <mo>)</mo> </mrow> <mi>T</mi> </msup> </mrow> </semantics></math>.</p>
Full article ">Figure 24
<p>(<b>a1</b>) The ciphertext image with <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> salt–pepper noise. (<b>a2</b>). The decryption image for the ciphertext image with <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> salt–pepper noise. (<b>b1</b>) The ciphertext image with <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> salt–pepper noise and <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> Gaussian noise. (<b>b2</b>) The decryption image for the ciphertext image with <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> salt–pepper noise and <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> Gaussian noise. (<b>c1</b>) The ciphertext image with <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> salt–pepper noise, <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> Gaussian noise, and <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>%</mo> </mrow> </semantics></math> speckle noise. (<b>c2</b>) The decryption image for the ciphertext image with <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> salt–pepper noise, <math display="inline"><semantics> <mrow> <mn>5</mn> <mo>%</mo> </mrow> </semantics></math> Gaussian noise, and <math display="inline"><semantics> <mrow> <mn>3</mn> <mo>%</mo> </mrow> </semantics></math> speckle noise.</p>
Full article ">Figure 25
<p>(<b>a1</b>) The ciphertext image with a center shear attack at 25% intensity. (<b>a2</b>) The diffused ciphertext image with a center shear attack at 25% intensity. (<b>a3</b>) The decryption image for the ciphertext image with a center shear attack at 25% intensity. (<b>b1</b>) The ciphertext image with a perimeter shear attack at 50% intensity. (<b>b2</b>) The diffused ciphertext image with a perimeter shear attack at 50% intensity. (<b>b3</b>) The decryption image for the ciphertext image with a perimeter shear attack at 50% intensity.</p>
Full article ">
24 pages, 3839 KiB  
Article
Design of a Novel Fractional Whale Optimization-Enhanced Support Vector Regression (FWOA-SVR) Model for Accurate Solar Energy Forecasting
by Abdul Wadood, Hani Albalawi, Aadel Mohammed Alatwi, Hafeez Anwar and Tariq Ali
Fractal Fract. 2025, 9(1), 35; https://doi.org/10.3390/fractalfract9010035 - 11 Jan 2025
Viewed by 666
Abstract
This study presents a novel Fractional Whale Optimization Algorithm-Enhanced Support Vector Regression (FWOA-SVR) framework for solar energy forecasting, addressing the limitations of traditional SVR in modeling complex relationships within data. The proposed framework incorporates fractional calculus in the Whale Optimization Algorithm (WOA) to [...] Read more.
This study presents a novel Fractional Whale Optimization Algorithm-Enhanced Support Vector Regression (FWOA-SVR) framework for solar energy forecasting, addressing the limitations of traditional SVR in modeling complex relationships within data. The proposed framework incorporates fractional calculus in the Whale Optimization Algorithm (WOA) to improve the balance between exploration and exploitation during hyperparameter tuning. The FWOA-SVR model is comprehensively evaluated against traditional SVR, Long Short-Term Memory (LSTM), and Backpropagation Neural Network (BPNN) models using training, validation, and testing datasets. Experimental results show that FWOA-SVR achieves superior performance with the lowest MSE values (0.036311, 0.03942, and 0.03825), RMSE values (0.19213, 0.19856, and 0.19577), and the highest R2 values (0.96392, 0.96104, and 0.96192) for training, validation, and testing, respectively. These results highlight the significant improvements of FWOA-SVR in prediction accuracy and efficiency, surpassing benchmark models in capturing complex patterns within the data. The findings highlight the effectiveness of integrating fractional optimization techniques into machine learning frameworks for advancing solar energy forecasting solutions. Full article
Show Figures

Figure 1

Figure 1
<p>PV power prediction classification.</p>
Full article ">Figure 2
<p>FFNN model.</p>
Full article ">Figure 3
<p>RNN vs. FNN x: input, y: output, h: hidden layer, w: loop.</p>
Full article ">Figure 4
<p>Architecture of an RNN with an unfolded structure.</p>
Full article ">Figure 5
<p>Internal LSTM cell structure.</p>
Full article ">Figure 6
<p>Back propagation neural network architecture.</p>
Full article ">Figure 7
<p>LSTM results. (<b>a</b>) Training targets vs. output, (<b>b</b>) validation targets vs. outputs, (<b>c</b>) testing targets vs. outputs, (<b>d</b>) combine errors plot for training, validation, and testing, (<b>e</b>) training predicted vs. actual values, (<b>f</b>) comparison of error metrics.</p>
Full article ">Figure 8
<p>BPNN results. (<b>a</b>) Training targets vs. output, (<b>b</b>) validation targets vs. outputs, (<b>c</b>) testing targets vs. outputs, (<b>d</b>) combine errors plot for training, validation, and testing, (<b>e</b>) training predicted vs. actual values, (<b>f</b>) comparison of error metrics.</p>
Full article ">Figure 9
<p>SVR results. (<b>a</b>) Training targets vs. output, (<b>b</b>) validation targets vs. outputs, (<b>c</b>) testing targets vs. outputs, (<b>d</b>) combine errors plot for training, validation, and testing, (<b>e</b>) training predicted vs. actual values, (<b>f</b>) comparison of error metrics.</p>
Full article ">Figure 10
<p>FWOA-SVR results. (<b>a</b>) Training targets vs. output, (<b>b</b>) validation targets vs. outputs, (<b>c</b>) testing targets vs. outputs, (<b>d</b>) combine errors plot for training, validation, and testing, (<b>e</b>) training predicted vs. actual values, (<b>f</b>) comparison of error metrics.</p>
Full article ">
20 pages, 8752 KiB  
Article
Fractional Electrodamage in A549 Human Lung Cancer Cells
by Hilario Martines-Arano, Jose Alberto Arano-Martinez, Manuel Alejandro Mosso-Pani, Alejandra Valdivia-Flores, Martin Trejo-Valdez, Blanca Estela García-Pérez and Carlos Torres-Torres
Fractal Fract. 2025, 9(1), 34; https://doi.org/10.3390/fractalfract9010034 - 10 Jan 2025
Viewed by 659
Abstract
Fractional electrodamage in A549 human lung cancer cells was analyzed by introducing a non-integer order parameter to model the influence of electrical stimulation on cellular behavior. Numerical simulations were conducted to evaluate the conversion of electrical energy to heat within A549 cancer cells, [...] Read more.
Fractional electrodamage in A549 human lung cancer cells was analyzed by introducing a non-integer order parameter to model the influence of electrical stimulation on cellular behavior. Numerical simulations were conducted to evaluate the conversion of electrical energy to heat within A549 cancer cells, emphasizing the electrocapacitive effects and electrical conductivity in modulating dielectric properties. Using the Riemann–Liouville fractional calculus framework, experimental results were accurately fitted, demonstrating the non-integer nature of electrodamage processes. The study identified a strong dependency of electrical behavior on frequency, revealing a critical role of fractional dynamics in the dielectric breakdown and susceptibility of A549 cells to voltage changes. These findings advance our understanding of cellular responses to electrical fields and provide insights into applications in cancer diagnostics, monitoring, and potential therapeutic treatments. Full article
Show Figures

Figure 1

Figure 1
<p>Roadmap describing the progress of the topic of study based on representative works. Refs. [<a href="#B19-fractalfract-09-00034" class="html-bibr">19</a>,<a href="#B20-fractalfract-09-00034" class="html-bibr">20</a>,<a href="#B21-fractalfract-09-00034" class="html-bibr">21</a>,<a href="#B22-fractalfract-09-00034" class="html-bibr">22</a>,<a href="#B23-fractalfract-09-00034" class="html-bibr">23</a>,<a href="#B24-fractalfract-09-00034" class="html-bibr">24</a>] for 2015–2021, respectively.</p>
Full article ">Figure 2
<p>(<b>a</b>) A549 cancer cells measured and deposited in the Metrohm DS 220 AT electrode; cancer cells were integrated into the drop using an electronic pipette, allowing precise control over the placement of cells. (<b>b</b>) Scheme of the experimental setup.</p>
Full article ">Figure 3
<p>A549 cancer cells with an electrical current induced by metallic electrodes located along a diameter of the well.</p>
Full article ">Figure 4
<p>Confocal image of the representative A549 human lung epithelial cancer cells studied; (<b>a</b>) nuclei of individual cells in blue; (<b>b</b>) typical actin filaments were stained with rhodamine-phalloidin (red), and its longitudinal distributions are show; (<b>c</b>) merge of two tracks (red and blue). All figures at 40X.</p>
Full article ">Figure 5
<p>(<b>a</b>) Numerical and experimental results of electrical impedance as a function of frequency for varying cell concentrations in a drop, with clear labels highlighting the trends. (<b>b</b>) Real part of the measured electrical impedance with distinct legends emphasizing differences across frequencies. (<b>c</b>) Imaginary part of the measured electrical impedance, with annotations to aid in interpreting the observed variations.</p>
Full article ">Figure 6
<p>Comparison of experimental and numerical data for: (<b>a</b>) electrical impedance of the studied samples, and (<b>b</b>) capacitance of A549 cancer cells.</p>
Full article ">Figure 7
<p>Heat map showing the electrodamage in A549 cancer cells as a function of electrical frequency (0–100 KHz) and voltage change (100–200 mV), for different cells concentration. The color intensity represents the level of electrodamage, with darker colors indicating higher damage levels. This linear distribution illustrates how electrodamage increases proportionally with higher frequencies and greater voltage changes. (<b>a</b>) Shows electrodamage as a function of applied voltage and electrical frequency, with a maximum electrodamage of 250 kHz/mV for 125,000 cells. (<b>b</b>) Displays a maximum electrodamage of 500 kHz/mV for 250,000 cells. (<b>c</b>) Exhibits a maximum electrodamage of 1000 kHz/mV for 500,000 cells.</p>
Full article ">Figure 8
<p>Variation in electrodamage as a function of electrical frequency and voltage change for different concentrations of cancerous cells.</p>
Full article ">Figure 9
<p>Change in temperature and electrical conversion into heat within A549 cancer cells. (<b>a</b>) Change in temperature representation inside A549 cancer cells. (<b>b</b>) Voltage and converted heat magnitude for electrical energy when it is converted into heat within biological cells.</p>
Full article ">Figure 10
<p>Effect of electrodamage on membrane integrity and viability of A549 cells. Blue cells in photographs represent the uptake of trypan blue staining by cells with compromised membrane integrity. Dot blots show the results for the apoptosis assay. The results are presented as the percentage of 10,000 cells. Live cells are found in quadrant 4 (Q4; Annexin V and PI negative), early apoptotic cells are indicated in Q1 (Annexin V positive and PI negative), dead cells by necrosis are demonstrated in Q2 (Annexin V and PI positive). The colors represent the collection of cells with the same intensity detected during flow cytometry, with blue representing low intensity (single cells) and red representing high intensity. Statistical analysis was conducted, with graphs representing the mean of two independent experiments with standard deviation. Comparisons between experimental conditions were performed using one-way ANOVA followed by Tukey’s post hoc test (* indicates a <span class="html-italic">p</span>-value of &lt;0.05 vs. time 0 living cells condition; ** indicates a <span class="html-italic">p</span>-value of &lt;0.001 vs. time 0 early apoptosis condition; *** indicates a <span class="html-italic">p</span>-value of &lt;0.001 vs. time 0 necrosis condition). Scale bars = 20 µm.</p>
Full article ">
21 pages, 16644 KiB  
Article
A Time–Frequency Composite Recurrence Plots-Based Series Arc Fault Detection Method for Photovoltaic Systems with Different Operating Conditions
by Zhendong Yin, Hongxia Ouyang, Junchi Lu, Li Wang and Shanshui Yang
Fractal Fract. 2025, 9(1), 33; https://doi.org/10.3390/fractalfract9010033 - 8 Jan 2025
Viewed by 573
Abstract
Series arc faults (SAFs) pose a significant threat to the safety of photovoltaic (PV) systems. However, the complex operating conditions of PV systems make accurate SAF detection challenging. To tackle this issue, this article proposes a SAF detection method based on time–frequency composite [...] Read more.
Series arc faults (SAFs) pose a significant threat to the safety of photovoltaic (PV) systems. However, the complex operating conditions of PV systems make accurate SAF detection challenging. To tackle this issue, this article proposes a SAF detection method based on time–frequency composite recurrence plots (TFCRPs). Initially, variational mode decomposition (VMD) is employed to decompose the current into distinct modes. Subsequently, the proposed TFCRP transforms these modes into two-dimensional matrices, enabling the measurement of composite similarity between different phase states. Lastly, extra tree (ET) is utilized to fuse the fractional recurrence entropy (FRE) and the singular values extracted from the matrices, thereby achieving SAF detection. Experimental results indicate that the proposed method achieves a detection accuracy of 98.75% and can accurately detect SAFs under various operating conditions. Comparisons with different methods further highlight the advancement of the proposed method. Furthermore, the detection time of the proposed method (209 ms) meets the requirements of standard UL1699B. Full article
Show Figures

Figure 1

Figure 1
<p>The framework of the proposed SAF detection method.</p>
Full article ">Figure 2
<p>TCRPs and FCRP obtained based on TFCRP under SAF condition and normal condition.</p>
Full article ">Figure 3
<p>The diagram of ET.</p>
Full article ">Figure 4
<p>The experimental platform: (<b>a</b>) diagram; (<b>b</b>) actual platform.</p>
Full article ">Figure 5
<p>Current waveforms under different load types and different operating conditions.</p>
Full article ">Figure 6
<p>The detection accuracy under different values of <span class="html-italic">β</span>.</p>
Full article ">Figure 7
<p>Detection accuracy and detection time corresponding to different numbers of singular values.</p>
Full article ">Figure 8
<p>The detection accuracy under different values of critical levels.</p>
Full article ">Figure 9
<p>The t-SNE visualization of extracted singular values under normal conditions and SAF conditions.</p>
Full article ">Figure 10
<p>The detection accuracy under different signal decomposition methods.</p>
Full article ">Figure 11
<p>The visualization bar chart of the detection results of different methods.</p>
Full article ">
18 pages, 4905 KiB  
Article
A Multiscale Fractal Approach for Determining Cushioning Curves of Low-Density Polymer Foams
by Mariela C. Bravo-Sánchez, Luis M. Palacios-Pineda, José L. Gómez-Color, Oscar Martínez-Romero, Imperio A. Perales-Martínez, Daniel Olvera-Trejo, Jorge A. Estrada-Díaz and Alex Elías-Zúñiga
Fractal Fract. 2025, 9(1), 32; https://doi.org/10.3390/fractalfract9010032 - 8 Jan 2025
Viewed by 576
Abstract
This study investigates the impact response of polymer foams commonly used in protective packaging, considering the fractal nature of their material microstructure. The research begins with static material characterization and impact tests on two low-density polyethylene foams. To capture the multiscale nature of [...] Read more.
This study investigates the impact response of polymer foams commonly used in protective packaging, considering the fractal nature of their material microstructure. The research begins with static material characterization and impact tests on two low-density polyethylene foams. To capture the multiscale nature of the dynamic response behavior of two low-density foams to sustain impact loads, fractional differential equations of motion are used to qualitatively and quantitatively describe the dynamic response behavior, assuming restoring forces for each foam characterized, respectively, by a polynomial of heptic degree and by a trigonometric tangential function. A two-scale transform is employed to solve the mathematical model and predict the material’s behavior under impact loads, accounting for the fractal structure of the material’s molecular configuration. To assess the accuracy of the mathematical model, we performed impact tests considering eight dropping heights and two plate weights. We found good predictions from the mathematical models compared to experimental data when the fractal derivatives were between 1.86 and 1.9, depending on the cushioning material used. The accuracy of the theoretical predictions achieved using fractal calculus elucidates how to predict multiscale phenomena associated with foam heterogeneity across space, density, and average pore size, which influence the foam chain’s molecular motion during impact loading conditions. Full article
Show Figures

Figure 1

Figure 1
<p>Polyethylene foams used in this work: (<b>a</b>) micrography of the porosity of LDPE-01 and (<b>b</b>) LDPE-02; (<b>c</b>) histogram of the porosity size of LDPE-01 and (<b>d</b>) LDPE-02.</p>
Full article ">Figure 2
<p>Compression test rig showing the load cell, compression plates, and the compressed specimen. The red arrow indicates the direction of the compressive force.</p>
Full article ">Figure 3
<p>Experimental system for drop weight test: (<b>a</b>) structure with elements; (<b>b</b>) data acquisition and conditioning system.</p>
Full article ">Figure 4
<p>Schematic of the program of experimental studies step by step: (01) variables identification; (02) checking norm and standards specifications; (03) identifying piezoelectric probes’ sensitivity to (04) collect data for impact force detection; (05) multiscale and fractal model to describe the material behavior; (06) connecting the multiscale and fractal nature of polymer foams with the material constitutive equation.</p>
Full article ">Figure 5
<p>Numerical solution of the dynamic fractal model, Equations (1) and (6), with fractional order <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.93</mn> </mrow> </semantics></math> and platen mass of <math display="inline"><semantics> <mrow> <mi>m</mi> <mo>=</mo> <mn>17</mn> <mtext> </mtext> <mi mathvariant="normal">k</mi> <mi mathvariant="normal">g</mi> </mrow> </semantics></math>. The curves depict the acceleration evolution over time during the impact of several droppings’ heights.</p>
Full article ">Figure 6
<p>Static force–displacement curve of polyethylene foams. The experimental measurements are represented as circles for LDPE-01 and diamonds for LDPE-02. The fitted curves are for each material according to Equations (6) and (7).</p>
Full article ">Figure 7
<p>Comparison of the acceleration during the impact between experimental results of the closed-cell polyethylene foam LDPE-01 and the model prediction using the polynomial fractal model with a fractional order of 0.93. The tests were performed using a dropping mass of 17 kg. The behavior is shown for different impact height values: (<b>a</b>) 15 cm; (<b>b</b>) 30 cm; (<b>c</b>) 45 cm; (<b>d</b>) 60 cm; (<b>e</b>) 75 cm; (<b>f</b>) 90 cm; (<b>g</b>) 105 cm; (<b>h</b>) 120 cm. The red dots represent experimental values, while the black continuous line is derived from the mathematical model.</p>
Full article ">Figure 8
<p>Comparison of the acceleration during the impact between experimental results of the closed-cell polyethylene foam LDPE-01 and the model prediction using the polynomial fractal model with a fractional order of 0.93. The tests were performed using a dropping mass of 34 kg. The behavior is shown for different impact height values: (<b>a</b>) 15 cm; (<b>b</b>) 30 cm; (<b>c</b>) 45 cm; (<b>d</b>) 60 cm; (<b>e</b>) 75 cm; (<b>f</b>) 90 cm; (<b>g</b>) 105 cm; (<b>h</b>) 120 cm.</p>
Full article ">Figure 9
<p>Comparison of the acceleration during the impact between experimental results of the closed-cell polyethylene foam LDPE-02 and the model prediction using the tangential fractal model with a fractional order of 0.95, the tests were performed using a dropping mass of 17 kg. The behavior is shown for different impact height values: (<b>a</b>) 15 cm; (<b>b</b>) 30 cm; (<b>c</b>) 45 cm; (<b>d</b>) 60 cm; (<b>e</b>) 75 cm; (<b>f</b>) 90 cm; (<b>g</b>) 105 cm; (<b>h</b>) 120 cm.</p>
Full article ">Figure 10
<p>Comparison of the acceleration during the impact between experimental results of the closed-cell polyethylene foam LDPE-02 and the model prediction using the tangential fractal model with a fractional order of 0.95. The tests were performed using a dropping mass of 34 kg. The behavior is shown for different impact height values: (<b>a</b>) 15 cm; (<b>b</b>) 30 cm; (<b>c</b>) 45 cm; (<b>d</b>) 60 cm; (<b>e</b>) 75 cm; (<b>f</b>) 90 cm; (<b>g</b>) 105 cm; (<b>h</b>) 120 cm.</p>
Full article ">Figure 11
<p>Comparison of the peak acceleration vs. dropping height of the foams used in the experimental tests: (<b>a</b>) the dots indicate the experimental data of LDPE-01, and the lines indicate the computed values from Equations (1) and (6) with an alpha value of 0.93; (<b>b</b>) the dots indicate the experimental data of LDPE-02, and the lines indicate the model prediction from Equations (1) and (7) with an alpha value of 0.95.</p>
Full article ">Figure 12
<p>Cushioning curves showing the peak acceleration vs. the static stress values. The dots are obtained from experimental tests, and the dashed lines are computed from (<b>a</b>) Equations (1) and (6) for LDPE-01 and (<b>b</b>) Equations (1) and (7) for LDPE-02.</p>
Full article ">
24 pages, 2990 KiB  
Article
Shallow-Water Wave Dynamics: Butterfly Waves, X-Waves, Multiple-Lump Waves, Rogue Waves, Stripe Soliton Interactions, Generalized Breathers, and Kuznetsov–Ma Breathers
by Sarfaraz Ahmed, Ujala Rehman, Jianbo Fei, Muhammad Irslan Khalid and Xiangsheng Chen
Fractal Fract. 2025, 9(1), 31; https://doi.org/10.3390/fractalfract9010031 - 8 Jan 2025
Viewed by 710
Abstract
A nonlinear (3+1)-dimensional nonlinear Geng equation that can be utilized to explain the dynamics of shallow-water waves in fluids is given special attention. Various wave solutions are produced with the aid of the Hirota bilinear and Cole–Hopf transformation [...] Read more.
A nonlinear (3+1)-dimensional nonlinear Geng equation that can be utilized to explain the dynamics of shallow-water waves in fluids is given special attention. Various wave solutions are produced with the aid of the Hirota bilinear and Cole–Hopf transformation techniques. By selecting the appropriate polynomial function and implementing the distinct transformations in bilinear form, bright lump waves, dark lump waves, and rogue waves (RWs) are generated. A positive quadratic transformation and cosine function are combined in Hirota bilinear form to evaluate the RW solutions. Typically, RWs have crests that are noticeably higher than those of surrounding waves. These waves are also known as killer, freak, or monster waves. The lump periodic solutions (LPSs) are obtained using a combination of the cosine and positive quadratic functions. The lump-one stripe solutions are computed by using a mix of positive quadratic and exponential transformations to the governing equation. The lump two-stripe solutions are obtained by using a mix of positive quadratic and exponential transformations to the governing equation. The interactional solutions of lump, kink, and periodic wave solutions are obtained. Additionally, mixed solutions with butterfly waves, X-waves and lump waves are computed. The Ma breather (MB), Kuznetsov–Ma breather (KMB), and generalized breathers GBs are generated. Furthermore, solitary wave solution is obtained and a relation for energy of the wave via ansatz function technique. Full article
Show Figures

Figure 1

Figure 1
<p>The 3D bright and dark lump wave propagations. The solution <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> to (8) with the selection of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and different <span class="html-italic">t</span>.</p>
Full article ">Figure 2
<p>The contour propagations for solution <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (8) with the selection of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and different <span class="html-italic">t</span>.</p>
Full article ">Figure 3
<p>The 3D bright–dark lump with periodic wave propagations for solution <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (13) with the choice of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> <mo> </mo> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and different <span class="html-italic">t</span>.</p>
Full article ">Figure 4
<p>The contour bright–dark lump with periodic wave propagations for solution <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>4</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (13) with the selection of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>20</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>50</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and different <span class="html-italic">t</span>.</p>
Full article ">Figure 5
<p>The 3D RW propagations: bright and dark lump waves for solution <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (16) with the choice of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and different <span class="html-italic">t</span>.</p>
Full article ">Figure 6
<p>The contour RW propagations: bright and dark lump waves (LWs) for solution <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>5</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (16) with the selection of <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and different <span class="html-italic">t</span>.</p>
Full article ">Figure 7
<p>L1kI profiles for <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>7</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (21) are constructed via <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 8
<p>L2kI profiles for <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>8</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (24) are constructed via <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 9
<p>Interaction between lump, periodic, and strip-wave profiles for <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>9</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (28) are constructed via <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 10
<p>Interaction between LP, RW, and strip-wave profiles for <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>10</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (31) are constructed via <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>7</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>5</mn> </msub> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>6</mn> </msub> <mo>=</mo> <mo>−</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>9</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>10</mn> </msub> <mo>=</mo> <mn>11</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>11</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>6</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>7</mn> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>k</mi> <mn>8</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 11
<p>MB profiles for <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>11</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (43) are constructed via <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>z</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 12
<p>KMB profiles for <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>12</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (37) are constructed via <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>4</mn> <mo>,</mo> <mo> </mo> <mi>p</mi> <mo>=</mo> <mn>5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>1.2</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 13
<p>GB profiles for <math display="inline"><semantics> <mrow> <msub> <mi>u</mi> <mn>13</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> in (40) are constructed via <math display="inline"><semantics> <mrow> <msub> <mi>a</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>a</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>3</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>1.5</mn> </mrow> </semantics></math>, <math display="inline"><semantics> <mrow> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>SW profiles for <math display="inline"><semantics> <mrow> <mi>u</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> in (45) are constructed via <math display="inline"><semantics> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>l</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>m</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>B</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo> </mo> <mi>x</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mo> </mo> <mi>t</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>.</p>
Full article ">
22 pages, 16370 KiB  
Article
The Unbalanced Control Research of Fractional-Order Cascaded H-Bridge Multilevel STATCOM
by Junhua Xu, Guopeng He, Songqin Tang, Zheng Gong, Chunwei Wang and Yue Lan
Fractal Fract. 2025, 9(1), 30; https://doi.org/10.3390/fractalfract9010030 - 7 Jan 2025
Viewed by 617
Abstract
Recent research on fractional-order cascaded H-bridge multilevel static compensator (FCHM-STATCOM) indicates that it has better performance than the traditional cascaded H-bridge multilevel static compensator (CHM-STATCOM). The existing FCHM-STATCOM control system lacks some special control links for dealing with unbalanced operative situations, which is [...] Read more.
Recent research on fractional-order cascaded H-bridge multilevel static compensator (FCHM-STATCOM) indicates that it has better performance than the traditional cascaded H-bridge multilevel static compensator (CHM-STATCOM). The existing FCHM-STATCOM control system lacks some special control links for dealing with unbalanced operative situations, which is demanded by power systems. This paper improves the existing FCHM-STATCOM control system to satisfy the demand for power systems, creating the potential for it to be applied in the electrical industry. The improvement of the FCHM-STATCOM control system is based on traditional CHM-STATCOM control systems, introducing special control loops for unbalanced operative situations. The improved FCHM-STATCOM control system constructed in this paper consists of an outer control loop that can apply special strategies for different control objectives, two inner control loops, respectively, for positive- and negative-sequence currents, and an inter-phase balancing control loop for balancing its arm operation. At the end of this paper, the results of digital simulations verify the FCHM-STATCOM complete control system’s capacity to regulate its negative-sequence currents and balance its arm operation to deal with unbalanced operative situations. Moreover, based on different strategies, the control system shows effectiveness in eliminating power oscillations and current balancing. Full article
Show Figures

Figure 1

Figure 1
<p>The main circuit topology of the FCHM-STATCOM.</p>
Full article ">Figure 2
<p>The Structure of The FCHM-STATCOM Basic Control System.</p>
Full article ">Figure 3
<p>The structure of the outer control loop in the basic control system.</p>
Full article ">Figure 4
<p>The structure of the inner control loop in the basic control system.</p>
Full article ">Figure 5
<p>The illustration of the three-sequence components with vectors.</p>
Full article ">Figure 6
<p>The structure of the FCHM-STATCOM complete control system.</p>
Full article ">Figure 7
<p>The structure of the outer control loop under steady states.</p>
Full article ">Figure 8
<p>The structure of the outer control loop under (<b>a</b>) constant reactive power and (<b>b</b>) constant reactive power current fault ride-through strategy.</p>
Full article ">Figure 9
<p>The structure of the negative-sequence inner control loop.</p>
Full article ">Figure 10
<p>The structure of the positive-sequence inner control loop.</p>
Full article ">Figure 11
<p>The structure of the inter-phases balancing control loop.</p>
Full article ">Figure 12
<p>The simulation results under the basic control system. (<b>a</b>) Waveforms of the grid voltages. (<b>b</b>) Waveforms of the FCHM-STATCOM currents. (<b>c</b>) Waveforms of the FCHM-STATCOM negative-sequence currents root-mean-square value. (<b>d</b>) Waveforms of the FCHM-STATCOM positive-sequence currents root-mean-square value.</p>
Full article ">Figure 13
<p>The simulation results under the APOE calculation strategy. (<b>a</b>) Waveforms of the grid voltages. (<b>b</b>) Waveforms of the FCHM-STATCOM active and reactive power. (<b>c</b>) Waveforms of the FCHM-STATCOM currents.</p>
Full article ">Figure 14
<p>The simulation results under the RPOE calculation strategy. (<b>a</b>) Waveforms of the grid voltages. (<b>b</b>) Waveforms of the FCHM-STATCOM active and reactive power. (<b>c</b>) Waveforms of the FCHM-STATCOM currents.</p>
Full article ">Figure 15
<p>The simulation results under the BPSC calculation strategy. (<b>a</b>) Waveforms of the grid voltages. (<b>b</b>) Waveforms of the FCHM-STATCOM active and reactive power. (<b>c</b>) Waveforms of the FCHM-STATCOM currents.</p>
Full article ">Figure 16
<p>The simulation results of the inter-phase balancing control. (<b>a</b>) Waveforms of the grid voltages. (<b>b</b>) Waveforms of the voltage of submodule capacitances under the inter-phase balancing control. (<b>c</b>) Waveforms of the voltage of submodule capacitances without the inter-phase balancing control.</p>
Full article ">
19 pages, 10969 KiB  
Article
Fish-Tail Structured Fractal Monopole Printed Antenna with Dual Broadband Characteristics for Sub–6GHz 5G and X–Band Radar Applications
by Guntamukkala Yaminisasi, Pokkunuri Pardhasaradhi, Nagandla Prasad, Boddapati Taraka Phani Madhav, Abeer D. Algarni, Sudipta Das and Mohammed El Ghzaoui
Fractal Fract. 2025, 9(1), 29; https://doi.org/10.3390/fractalfract9010029 - 7 Jan 2025
Viewed by 652
Abstract
This article presents a printed antenna, designed with a fractal-shaped patch with fish-tail structured outer edges, a tapered feedline, and a rectangular notch-based defected partial ground structure (DPGS). The presented design has been printed on a FR-4 substrate, which has a dielectric constant [...] Read more.
This article presents a printed antenna, designed with a fractal-shaped patch with fish-tail structured outer edges, a tapered feedline, and a rectangular notch-based defected partial ground structure (DPGS). The presented design has been printed on a FR-4 substrate, which has a dielectric constant of 4.4 and a loss tangent of 0.035. The overall dimension of the proposed antenna is 24 × 40 × 1.6 mm3. The proposed fractal antenna achieved dual broad-band functionality by maintaining the compact size of the radiator. The designed fractal radiator can operate at three distinct resonant frequencies (3.22, 7.64, and 9.41 GHz), covering two distinct frequency bands, extending from 2.5 to 4.2 GHz and 7 to 9.8 GHz. A thorough parametric analysis has been carried out using CST Studio suite 2019 licensed version to achieve better performance in terms of S11 (dB), radiation efficiency, and gain over the operating frequency range. The operating bands fall within the S, C, and X bands to support sub-6GHz 5G and Radar applications at the microwave frequency range. Full article
Show Figures

Figure 1

Figure 1
<p>Design framework flowchart of the fractal antenna.</p>
Full article ">Figure 2
<p>Proposed antenna: (<b>a</b>) front and (<b>b</b>) back views.</p>
Full article ">Figure 3
<p>Projected view of the radiating patch symbolizing design parameters.</p>
Full article ">Figure 4
<p>(<b>a</b>–<b>g</b>) Different iteration steps for designing the intended antenna.</p>
Full article ">Figure 5
<p>S<sub>11</sub> (dB) values for each iteration step.</p>
Full article ">Figure 6
<p>Various ground plane configurations: (<b>a</b>) FGPS (Full ground plane structure), (<b>b</b>) PGPS (Partial ground plane structure), (<b>c</b>) DPGS (Defected partial ground structure).</p>
Full article ">Figure 7
<p>Variations in S<sub>11</sub> parameters for various ground plane structures.</p>
Full article ">Figure 8
<p>Variations in gain for various ground plane structures.</p>
Full article ">Figure 9
<p>Variations in radiation efficiency for various ground plane structures.</p>
Full article ">Figure 10
<p>Simulated analysis of S<sub>11</sub> (dB) response as a function of l<sub>g</sub>.</p>
Full article ">Figure 11
<p>Simulated analysis of S<sub>11</sub> (dB) response as a function of S<sub>w</sub>.</p>
Full article ">Figure 12
<p>Simulated analysis of S<sub>11</sub> (dB) response as a function of S<sub>l</sub>.</p>
Full article ">Figure 13
<p>S<sub>11</sub> (dB) response of the proposed antenna for different dielectric materials.</p>
Full article ">Figure 14
<p>Fabricated Prototype: (<b>a</b>) Front view, (<b>b</b>) Back view.</p>
Full article ">Figure 15
<p>Images of the measuring setup of the proposed antenna: (<b>a</b>) VNA snapshot, (<b>b</b>) anechoic chamber with AUT.</p>
Full article ">Figure 16
<p>Simulated and measured results obtained for S<sub>11</sub>.</p>
Full article ">Figure 17
<p>Gains at the corresponding resonating frequencies of (<b>a</b>) 3.22 GHz, (<b>b</b>) 7.64 GHz, and (<b>c</b>) 9.41 GHz.</p>
Full article ">Figure 18
<p>Co-pol and cross-pol radiation patterns: (<b>a</b>) 3.22 GHz E-Plane, (<b>b</b>) 3.22 GHz H-plane, (<b>c</b>) 7.64 GHz E-Plane, (<b>d</b>) 7.64 GHz H-Plane, (<b>e</b>) 9.41 GHz E-Plane, and (<b>f</b>) 9.41 GHz H-Plane.</p>
Full article ">Figure 19
<p>Representation of Gain vs Frequency plot using both measurement and simulation results.</p>
Full article ">Figure 20
<p>Radiation efficiency plot obtained using both measurement and simulation.</p>
Full article ">Figure 21
<p>Plots of distributed Surface currents at resonating frequencies (<b>a</b>) 3.2 GHz (<b>b</b>) 7.6 GHz (<b>c</b>) 9.4 GHz.</p>
Full article ">Figure 22
<p>Equivalent circuit of the proposed antenna.</p>
Full article ">Figure 23
<p>Comparison of the Reflection coefficient in CST and ADS.</p>
Full article ">
21 pages, 1282 KiB  
Article
Computational Study of a Fractional-Order HIV Epidemic Model with Latent Phase and Treatment
by Sana Abdulkream Alharbi and Nada A. Almuallem
Fractal Fract. 2025, 9(1), 28; https://doi.org/10.3390/fractalfract9010028 - 7 Jan 2025
Viewed by 602
Abstract
In this work, we propose and investigate a model of the dynamical behavior of HIV/AIDS transmission by considering a new compartment of the population with HIV: the latent asymptomatic class. The infection reproduction number that stabilizes the global dynamics of the model is [...] Read more.
In this work, we propose and investigate a model of the dynamical behavior of HIV/AIDS transmission by considering a new compartment of the population with HIV: the latent asymptomatic class. The infection reproduction number that stabilizes the global dynamics of the model is evaluated. We analyze the model’s global asymptotic stability using the Lyapunov function and LaSalle’s invariance principle. To identify the primary factors affecting the dynamics of HIV/AIDS, a sensitivity analysis of the model parameters is conducted. We also examine a fractional-order HIV model using the Caputo fractional differential operator. Through qualitative analysis and applications, we determine the existence and uniqueness of the model’s solutions. We derive some results from the fixed-point theorem and Ulam–Hyers stability. Ultimately, the obtained numerical simulation results are in agreement with the analytical outcomes obtained from the model analysis. Our findings illustrate the efficacy of the fractional model in depicting the dynamics of the HIV/AIDS epidemic and offering critical insights for the formulation of effective control strategies. The results show that early intervention and treatment in the latent phase of infection can decrease the spread of the disease and its progression to AIDS, as well as increase the success of treatment strategies. Full article
Show Figures

Figure 1

Figure 1
<p>Diagram of proposed HIV/AIDS epidemic model with latent stage and treatment.</p>
Full article ">Figure 2
<p>Sensitivity index of the parameters for model (<a href="#FD1-fractalfract-09-00028" class="html-disp-formula">1</a>). The sensitivity index varies between <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math>; the largest index (in absolute value) corresponds to the parameter to which the model outcome is most sensitive: here <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>, <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <mi>ω</mi> </semantics></math>, <math display="inline"><semantics> <msub> <mi>δ</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math>, followed by <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>α</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <msub> <mi>ξ</mi> <mn>2</mn> </msub> </semantics></math>. All other parameters have index <math display="inline"><semantics> <mrow> <mo>&lt;</mo> <mn>0.1</mn> </mrow> </semantics></math>. The sensitivity index ranges from <math display="inline"><semantics> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </semantics></math> to <math display="inline"><semantics> <mrow> <mo>+</mo> <mn>1</mn> </mrow> </semantics></math>. The largest index (in absolute value) represents the parameter to which the model outcome is most sensitive, followed by <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math>, <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math>, <math display="inline"><semantics> <mi>ω</mi> </semantics></math>, <math display="inline"><semantics> <msub> <mi>δ</mi> <mn>2</mn> </msub> </semantics></math>, and <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>.</mo> </mrow> </semantics></math> The index of all other parameters is less than 0.1.</p>
Full article ">Figure 3
<p>The effect of varying model parameters on <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math>: (<b>a</b>) <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> against <math display="inline"><semantics> <msub> <mi>β</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>β</mi> <mn>2</mn> </msub> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> against <math display="inline"><semantics> <msub> <mi>α</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>α</mi> <mn>2</mn> </msub> </semantics></math>; (<b>c</b>) <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> against <math display="inline"><semantics> <msub> <mi>k</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>k</mi> <mn>2</mn> </msub> </semantics></math>; (<b>d</b>) <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> against <math display="inline"><semantics> <mi>ϵ</mi> </semantics></math> and <math display="inline"><semantics> <msub> <mi>η</mi> <mn>2</mn> </msub> </semantics></math>; (<b>e</b>) <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> against <span class="html-italic">m</span> and <math display="inline"><semantics> <mi>ω</mi> </semantics></math>; (<b>f</b>) <math display="inline"><semantics> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> </semantics></math> against <math display="inline"><semantics> <mrow> <mi>δ</mi> <mn>1</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <msub> <mi>δ</mi> <mn>2</mn> </msub> </semantics></math>.</p>
Full article ">Figure 4
<p>Trajectories of system (<a href="#FD1-fractalfract-09-00028" class="html-disp-formula">1</a>) considering the values of the baseline parameters given in <a href="#fractalfract-09-00028-t001" class="html-table">Table 1</a>, when <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.01</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.69</mn> <mo>&lt;</mo> <mn>1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 5
<p>Trajectories of model (<a href="#FD1-fractalfract-09-00028" class="html-disp-formula">1</a>) when <math display="inline"><semantics> <mrow> <msub> <mi>β</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.03</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> <mo>&gt;</mo> <mn>1</mn> </mrow> </semantics></math> in two cases: (<b>a</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.0</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>4.5</mn> </mrow> </semantics></math>; (<b>b</b>) <math display="inline"><semantics> <mrow> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.35</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <msub> <mi mathvariant="script">R</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>2.1</mn> </mrow> </semantics></math>.</p>
Full article ">Figure 6
<p>Graphical description of the behavior of (<b>a</b>) Susceptible class (<span class="html-italic">S</span>); (<b>b</b>) Latent class (<math display="inline"><semantics> <msub> <mi>I</mi> <mn>1</mn> </msub> </semantics></math>); (<b>c</b>) Symptomatic class (<math display="inline"><semantics> <msub> <mi>I</mi> <mn>2</mn> </msub> </semantics></math>); (<b>d</b>) Advanced AIDS class (<span class="html-italic">A</span>); (<b>e</b>) Treatment class (<span class="html-italic">T</span>); (<b>f</b>) Recovered class (<span class="html-italic">R</span>) of the Caputo fractional model with different values of <span class="html-italic">v</span>.</p>
Full article ">Figure 6 Cont.
<p>Graphical description of the behavior of (<b>a</b>) Susceptible class (<span class="html-italic">S</span>); (<b>b</b>) Latent class (<math display="inline"><semantics> <msub> <mi>I</mi> <mn>1</mn> </msub> </semantics></math>); (<b>c</b>) Symptomatic class (<math display="inline"><semantics> <msub> <mi>I</mi> <mn>2</mn> </msub> </semantics></math>); (<b>d</b>) Advanced AIDS class (<span class="html-italic">A</span>); (<b>e</b>) Treatment class (<span class="html-italic">T</span>); (<b>f</b>) Recovered class (<span class="html-italic">R</span>) of the Caputo fractional model with different values of <span class="html-italic">v</span>.</p>
Full article ">
40 pages, 3314 KiB  
Review
Multifractal Applications in Hydro-Climatology: A Comprehensive Review of Modern Methods
by Shamseena Vahab and Adarsh Sankaran
Fractal Fract. 2025, 9(1), 27; https://doi.org/10.3390/fractalfract9010027 - 6 Jan 2025
Viewed by 963
Abstract
Complexity evaluation of hydro-climatic datasets is a challenging but essential pre-requisite for accurate modeling and subsequent planning. Changes in climate and anthropogenic interventions amplify the complexity of hydro-climatic time-series. Understanding persistence and fractal features may help us to develop new and robust modeling [...] Read more.
Complexity evaluation of hydro-climatic datasets is a challenging but essential pre-requisite for accurate modeling and subsequent planning. Changes in climate and anthropogenic interventions amplify the complexity of hydro-climatic time-series. Understanding persistence and fractal features may help us to develop new and robust modeling frameworks which can work well under non-stationary and non-linear environments. Classical fractal hydrology, rooted in statistical physics, has been developed since the 1980s and the modern alternatives based on de-trending, complex network, and time–frequency principles have been developed since 2002. More specifically, this review presents the procedures of Multifractal Detrended Fluctuation Analysis (MFDFA) and Arbitrary Order Hilbert Spectral Analysis (AOHSA), along with their applications in the field of hydro-climatology. Moreover, this study proposes a complex network-based fractal analysis (CNFA) framework for the multifractal analysis of daily streamflows as an alternative. The case study proves the efficacy of CNMFA and shows that it has the flexibility to be applied in visibility and inverted visibility schemes, which is effective in complex datasets comprising both high- and low-amplitude fluctuations. The comprehensive review showed that more than 75% of the literature focuses on characteristic analysis of the time-series using MFDFA rather than modeling. Among the variables, about 70% of studies focused on analyzing fine-resolution streamflow and rainfall datasets. This study recommends the use of CNMF in hydro-climatology and advocates the necessity of knowledge integration from multiple fields to enhance the multifractal modeling applications. This study further asserts that transforming the characterization into operational hydrology is highly warranted. Full article
Show Figures

Figure 1

Figure 1
<p>Diagram showing the connections of Peng (1994) [<a href="#B18-fractalfract-09-00027" class="html-bibr">18</a>] and Kantelhardt et al. (2002) [<a href="#B19-fractalfract-09-00027" class="html-bibr">19</a>] which laid the foundation of detrended fluctuation for fractal analysis. The radius of the circles is in proportion to the citation count based on Google scholar data. The connected papers’ diagram is generated using <a href="https://www.connectedpapers.com/" target="_blank">https://www.connectedpapers.com/</a>, accessed on 23 December 2024.</p>
Full article ">Figure 2
<p>The overall methodology for the multifractal analysis of streamflow data using CNMF framework. In the symbolic plots of degree distribution, Renyi graph and singularity graph, the blue colored dots represents the results by VG analysis and red colored dots represents the results by UDVG scheme.</p>
Full article ">Figure 3
<p>The Degree Distribution Curves for the overall streamflow data analysis for the selected stations of (<b>a</b>) Perumannu, (<b>b</b>) Pattazhy and (<b>c</b>) Ramamangalam.</p>
Full article ">Figure 4
<p>The Renyi graphs and singularity spectra of the complete length daily streamflow data of the selected stations (<b>a</b>) Perummanu (<b>b</b>) Pattazhy and (<b>c</b>) Ramamangalam by VG and UDVG methods. The upper panels show the Renyi graphs and lower panels show the singularity spectra.</p>
Full article ">Figure 5
<p>The UDVG Renyi Graphs and singularity graphs for the stream gauge stations of (<b>a</b>) Perumannu (<b>b</b>) Pattazhy and (<b>c</b>) Ramamangalam for seasonal flows.</p>
Full article ">Figure 6
<p>Human Water Climate nexus.</p>
Full article ">Figure 7
<p>Citations received by based papers of modern multifractal algorithms.</p>
Full article ">Figure 8
<p>Keywords for cross-cutting research in hydro-complexity.</p>
Full article ">
17 pages, 4370 KiB  
Article
Discrete Element Study of Particle Size Distribution Shape Governing Critical State Behavior of Granular Material
by Mingdong Jiang, Daniel Barreto, Zhi Ding and Kaifang Yang
Fractal Fract. 2025, 9(1), 26; https://doi.org/10.3390/fractalfract9010026 - 6 Jan 2025
Viewed by 709
Abstract
Granular soil is a porous medium composed of particles with different sizes and self-similar structures, exhibiting fractal characteristics. It is well established that variations in these fractal properties, such as particle size distribution (PSD), significantly influence the mechanical behavior of the soil. In [...] Read more.
Granular soil is a porous medium composed of particles with different sizes and self-similar structures, exhibiting fractal characteristics. It is well established that variations in these fractal properties, such as particle size distribution (PSD), significantly influence the mechanical behavior of the soil. In this paper, a three-dimensional (3D) Discrete Element Method (DEM) is applied to study the mechanical and critical-state behavior of the idealized granular assemblages, in which various PSD shape parameters are considered, including the coefficient of uniformity (Cu), the coefficient of curvature (Cc), and the coefficient of size span (Cs). In addition, the same PSDs but with different mean particle sizes (D50) are also employed in the numerical simulations to examine the particle size effect on the mechanical behavior of the granular media. Numerical triaxial tests are carried out by imposing axial compression under constant mean effective pressure conditions. A unique critical-state stress ratio in p-q space is observed, indicating that the critical friction angle is independent of the shape of the PSD. However, in the e-p′ plane, the critical state line (CSL) shifts downward and rotates counterclockwise, as the grading becomes more widely distributed, i.e., the increasing coefficient of span (Cs). Additionally, a decrease in the coefficient of curvature (Cc) would also move the CSL downward but with negligible rotation. However, it is found that the variations in the mean particle size (D50) and coefficient of uniformity (Cu) do not affect the position of the CSL in the e-p′ plane. The numerical findings may shed some light on the development of constitutive models of sand that undergo variations in the grading due to crushing and erosion, and address fractal problems related to micro-mechanics in soils. Full article
(This article belongs to the Special Issue Fractal and Fractional Models in Soil Mechanics)
Show Figures

Figure 1

Figure 1
<p>Particle size distribution of samples.</p>
Full article ">Figure 2
<p>Deviatoric stress evolution of samples with various PSDs at <span class="html-italic">p</span><sub>0</sub>′ = 500 kPa.</p>
Full article ">Figure 3
<p>Effect of descriptors on deviatoric stress responses: (<b>a</b>) D<sub>50</sub> effect; (<b>b</b>) C<sub>u</sub> effect; (<b>c</b>) C<sub>c</sub> effect; (<b>d</b>) C<sub>s</sub> effect.</p>
Full article ">Figure 4
<p>Volumetric responses with various PSDs at <span class="html-italic">p</span><sub>0</sub>′ = 500 kPa.</p>
Full article ">Figure 5
<p>Effect of descriptors on volumetric responses: (<b>a</b>) D<sub>50</sub> effect; (<b>b</b>) C<sub>u</sub> effect; (<b>c</b>) C<sub>c</sub> effect; (<b>d</b>) C<sub>s</sub> effect.</p>
Full article ">Figure 6
<p>Coordination number responses with various PSDs at <span class="html-italic">p</span><sub>0</sub>′ = 500 kPa.</p>
Full article ">Figure 7
<p>Effect of descriptors on the evolution of coordination number: (<b>a</b>) D<sub>50</sub> effect; (<b>b</b>) C<sub>u</sub> effect; (<b>c</b>) C<sub>c</sub> effect; (<b>d</b>) C<sub>s</sub> effect.</p>
Full article ">Figure 7 Cont.
<p>Effect of descriptors on the evolution of coordination number: (<b>a</b>) D<sub>50</sub> effect; (<b>b</b>) C<sub>u</sub> effect; (<b>c</b>) C<sub>c</sub> effect; (<b>d</b>) C<sub>s</sub> effect.</p>
Full article ">Figure 8
<p>Fabric evolution of samples with various PSDs.</p>
Full article ">Figure 9
<p>Lode angle evolution of samples with various PSDs.</p>
Full article ">Figure 10
<p>Critical states in <span class="html-italic">p</span>′<span class="html-italic">-q</span> plane of all samples.</p>
Full article ">Figure 11
<p>Critical states void ratio: (<b>a</b>) <span class="html-italic">e-logp</span>′ plane; (<b>b</b>) <span class="html-italic">e-p</span>′ plane.</p>
Full article ">Figure 12
<p>Effect of descriptors on critical state void ratio: (<b>a</b>) D<sub>50</sub> effect; (<b>b</b>) C<sub>u</sub> effect; (<b>c</b>) C<sub>c</sub> effect; (<b>d</b>) C<sub>s</sub> effect.</p>
Full article ">Figure 13
<p>Critical state coordination number relationship with <math display="inline"><semantics> <mrow> <msub> <mrow> <mi>e</mi> </mrow> <mrow> <mi>Γ</mi> </mrow> </msub> </mrow> </semantics></math>.</p>
Full article ">Figure 14
<p>Critical state fabric norm.</p>
Full article ">
Previous Issue
Next Issue
Back to TopTop