Beyond Chaos in Fractional-Order Systems: Keen Insight in the Dynamic Effects
<p>Stability region for linear time-invariant systems of (<b>a</b>) integer order and (<b>b</b>) fractional order for <math display="inline"><semantics> <mrow> <mn>0</mn> <mo><</mo> <mi>q</mi> <mo><</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Development of the geometric analysis of chaotic systems as a tool (<b>a</b>) for describing the volume of the Lorenz attractor with simple geometric figures [<a href="#B44-fractalfract-09-00022" class="html-bibr">44</a>], (<b>b</b>) using Nambu mechanics to show that the intersection of two quadratic surfaces can generate the non-dissipative part of the Lorenz system [<a href="#B46-fractalfract-09-00022" class="html-bibr">46</a>], (<b>c</b>) recognizing the occurrence of patterns in multi-scroll oscillators [<a href="#B48-fractalfract-09-00022" class="html-bibr">48</a>], (<b>d</b>) in the estimation of extreme values using polynomial approximation [<a href="#B49-fractalfract-09-00022" class="html-bibr">49</a>], and (<b>e</b>,<b>f</b>) in the study of dynamic effects induced in the response of fractional-order electronic circuits [<a href="#B50-fractalfract-09-00022" class="html-bibr">50</a>].</p> "> Figure 3
<p>(<b>a</b>) Visualization of the 2D projection surfaces of the Rössler attractor obtained with the convex hull for the integer-order system. The areas calculated correspond to the filled regions. (<b>b</b>) Poincaré section of the Rössler attractor used to calculate the fractal dimension. The intersection points for the section <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> are shown in red.</p> "> Figure 4
<p>Characterization of the Rössler system by changing the derivation order. (<b>a</b>) Bifurcation diagram, calculated with the local maxima of the state variables <span class="html-italic">x</span>. (<b>b</b>) Value in Kaplan–Yorke dimension (<math display="inline"><semantics> <msub> <mi>D</mi> <mrow> <mi>K</mi> <mi>Y</mi> </mrow> </msub> </semantics></math>) and fractal dimension (<math display="inline"><semantics> <msub> <mi>D</mi> <mi>f</mi> </msub> </semantics></math>) for each attractor obtained in the bifurcation diagram. (<b>c</b>) The system’s frequency spectrum for some values is in the order of the derivative. (<b>d</b>) Behavior of the areas (<math display="inline"><semantics> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </semantics></math>) and volume (V) of the system attractor.</p> "> Figure 5
<p>Dynamical variations of the Rössler attractors for different derivative orders seen in the phase space and in the Poincaré section <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> for (<b>a</b>,<b>e</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.9505</mn> </mrow> </semantics></math>, (<b>b</b>,<b>f</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.9753</mn> </mrow> </semantics></math>, (<b>c</b>,<b>g</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.9877</mn> </mrow> </semantics></math>, and (<b>d</b>,<b>h</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Behavior of the Rössler attractor areas for different values in the order of the derivative <span class="html-italic">q</span>, in the planes (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </semantics></math>, and (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </semantics></math>.</p> "> Figure 7
<p>(<b>a</b>) Chaotic attractor of the A-C system for <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. Characterization of the Álvarez–Curiel system by changing the derivation order. (<b>b</b>) Bifurcation diagram, calculated with the local maxima of the state variables <span class="html-italic">x</span>. (<b>c</b>) Value in Kaplan–Yorke dimension (<math display="inline"><semantics> <msub> <mi>D</mi> <mrow> <mi>K</mi> <mi>Y</mi> </mrow> </msub> </semantics></math>) and fractal dimension (<math display="inline"><semantics> <msub> <mi>D</mi> <mi>f</mi> </msub> </semantics></math>) for each attractor obtained in the bifurcation diagram. (<b>d</b>) Behavior of the areas (<math display="inline"><semantics> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>y</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>A</mi> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> </semantics></math>, <math display="inline"><semantics> <msub> <mi>A</mi> <mrow> <mi>y</mi> <mi>z</mi> </mrow> </msub> </semantics></math>) and volume (V) of the system attractor.</p> "> Figure 8
<p>Dynamical variations of the Álvarez–Curiel attractors for different derivative orders in phase space along with the Poincaré section (black mesh for <math display="inline"><semantics> <mrow> <mi>y</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>) and the recurrence point marked in red for (<b>a</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.98</mn> </mrow> </semantics></math>, (<b>b</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.985</mn> </mrow> </semantics></math>, (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>0.995</mn> </mrow> </semantics></math>, and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>q</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Preliminaries
2.1. Fractional-Order Calculus
- The system is stable if and only if for .
- The system is asymptotically stable if and only if for .
- The system is unstable if and only if , for at least one eigenvalue.
2.2. Dynamical Systems
- is invariant under the evolution;
- The distance of any solution from vanishes as .
2.3. Lyapunov Exponent
2.4. Fractal Dimension
3. Materials and Methods
- The points generated by the attractor in the phase space are taken and structured as a coordinate matrix;
- The area value is calculated in each of the projections of the attractor;
- The volume covered by the attractor in the state space is calculated.
4. Results and Discussion
Álvarez–Curiel (A-C) System
5. Conclusions
- Since there is no comparison point to a physical system, it is impossible to mention that using fractional-order operators allows us to compensate for uncertainties in studying the chaotic systems used in this study. Moreover, it has been shown that modeling the chaotic Rössler system by fractional derivatives (the Rössler attractor was chosen for this purpose because it was the first chaotic system in which the existence of chaotic behavior in continuous systems with less than three dimensions was demonstrated) does not alter the power spectra of the system in a representative way. However, the implemented methodology allows the comparison between the behaviors exhibited by dynamical systems, regardless of the order of the derivative that caused their behavior, and can be applied to dynamic variations due to the use of fractional-order operators to systems subject to parametric modification or systems subject to control laws or electromagnetic fields.
- The study of the Rössler system and the Álvarez–Curiel attractor using Lyapunov exponents to calculate the Kaplan–Yorke dimension, as well as the estimation of the fractal dimension, proved to be an insufficient description of the changes that occur in chaotic systems of fractional-order. The values obtained in these metrics behave almost monotonically during the variations made, and the interpretation of the results is, by definition, limited to confirming the presence of chaotic behavior.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chenciner, A. Poincaré and the three-body problem. In Henri Poincaré, 1912–2012: Poincaré Seminar 2012; Springer: Berlin/Heidelberg, Germany, 2014; pp. 51–149. [Google Scholar]
- Boffetta, G.; Vulpiani, A. Andrey Nikolaevich Kolmogorov: The Foundations of Probability. And More. In Mathematical Lives: Protagonists of the Twentieth Century From Hilbert to Wiles; Springer: Berlin/Heidelberg, Germany, 2010; pp. 117–121. [Google Scholar]
- Arnold, V.I. Huygens and Barrow, Newton and Hooke: Pioneers in Mathematical Analysis and Catastrophe Theory from Evolvents to Quasicrystals; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
- Arnol’d, V.I. Mathematics of chaos. Mosc. Math. J. 2010, 10, 273–283. [Google Scholar] [CrossRef]
- Moser, J. Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics; Princeton University Press: Princeton, NJ, USA, 2001; Volume 1. [Google Scholar]
- Casado, C.M.M. Edward Lorenz (1917–2008): Padre de la teoría del caos? Rev. Española Física 2011, 22, 58–60. [Google Scholar]
- Ambika, G. Ed Lorenz: Father of the ‘butterfly effect’. Resonance 2015, 20, 198–205. [Google Scholar] [CrossRef]
- Lorenz, E. The butterfly effect. World Sci. Ser. Nonlinear Sci. Ser. A 2000, 39, 91–94. [Google Scholar]
- Schuster, H.G.; Just, W. Deterministic Chaos: An Introduction; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Cattani, M.; Caldas, I.L.; Souza, S.L.d.; Iarosz, K.C. Deterministic chaos theory: Basic concepts. Rev. Bras. Ensino Física 2016, 39, 1–13. [Google Scholar] [CrossRef]
- Politi, A. Lyapunov exponent. Scholarpedia 2013, 8, 2722. [Google Scholar] [CrossRef]
- Wolf, A. Quantifying chaos with Lyapunov exponents. Chaos 1986, 16, 285–317. [Google Scholar]
- Oseledec, V.I. A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc. 1968, 19, 197–231. [Google Scholar]
- Isermann, R.; Münchhof, M. Identification of Dynamic Systems: An Introduction with Applications; Springer: Berlin/Heidelberg, Germany, 2011; Volume 85. [Google Scholar]
- Karimov, T.; Druzhina, O.; Karimov, A.; Tutueva, A.; Ostrovskii, V.; Rybin, V.; Butusov, D. Single-coil metal detector based on spiking chaotic oscillator. Nonlinear Dyn. 2022, 107, 1295–1312. [Google Scholar] [CrossRef]
- Karimov, T.; Druzhina, O.; Vatnik, V.; Ivanova, E.; Kulagin, M.; Ponomareva, V.; Voroshilova, A.; Rybin, V. Sensitivity optimization and experimental study of the long-range metal detector based on chaotic duffing oscillator. Sensors 2022, 22, 5212. [Google Scholar] [CrossRef]
- Echenausía-Monroy, J.L.; Cuesta-García, J.R.; Pena Ramirez, J. The wonder world of complex systems. Chaos Theory Appl. 2022, 4, 267–273. [Google Scholar] [CrossRef]
- Bianconi, G.; Arenas, A.; Biamonte, J.; Carr, L.D.; Kahng, B.; Kertesz, J.; Kurths, J.; Lü, L.; Masoller, C.; Motter, A.E.; et al. Complex systems in the spotlight: Next steps after the 2021 Nobel Prize in Physics. J. Phys. Complex. 2023, 4, 010201. [Google Scholar] [CrossRef]
- Ross, B. Fractional calculus. Math. Mag. 1977, 50, 115–122. [Google Scholar] [CrossRef]
- David, S.A.; Linares, J.L.; Pallone, E.M.d.J.A. Fractional order calculus: Historical apologia, basic concepts and some applications. Rev. Bras. Ensino Física 2011, 33, 4302. [Google Scholar] [CrossRef]
- Almeida, R.; Tavares, D.; Torres, D.F. The Variable-Order Fractional Calculus of Variations; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Podlubny, I.; Magin, R.L.; Trymorush, I. Niels Henrik Abel and the birth of fractional calculus. Fract. Calc. Appl. Anal. 2017, 20, 1068–1075. [Google Scholar] [CrossRef]
- Li, C.; Chen, G. Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A Stat. Mech. Its Appl. 2004, 341, 55–61. [Google Scholar] [CrossRef]
- Grigorenko, I.; Grigorenko, E. Chaotic dynamics of the fractional Lorenz system. Phys. Rev. Lett. 2003, 91, 034101. [Google Scholar] [CrossRef]
- Gao, X.; Yu, J. Chaos in the fractional order periodically forced complex Duffing’s oscillators. Chaos Solitons Fractals 2005, 24, 1097–1104. [Google Scholar] [CrossRef]
- Lu, J.G. Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 2006, 354, 305–311. [Google Scholar] [CrossRef]
- Sheu, L.J.; Chen, H.K.; Chen, J.H.; Tam, L.M.; Chen, W.C.; Lin, K.T.; Kang, Y. Chaos in the Newton–Leipnik system with fractional order. Chaos Solitons Fractals 2008, 36, 98–103. [Google Scholar] [CrossRef]
- Faieghi, M.R.; Delavari, H. Chaos in fractional-order Genesio–Tesi system and its synchronization. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 731–741. [Google Scholar] [CrossRef]
- Li, H.; Liao, X.; Luo, M. A novel non-equilibrium fractional-order chaotic system and its complete synchronization by circuit implementation. Nonlinear Dyn. 2012, 68, 137–149. [Google Scholar] [CrossRef]
- Zambrano-Serrano, E.; Muñoz-Pacheco, J.M.; Campos-Cantón, E. Circuit synthesis of an incommensurate fractional order multi-scroll PWL chaotic system. In Proceedings of the 2017 6th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 4–6 May 2017; IEEE: New York, NY, USA, 2017; pp. 1–4. [Google Scholar]
- Zambrano-Serrano, E.; Muñoz-Pacheco, J.; Campos-Cantón, E. Chaos generation in fractional-order switched systems and its digital implementation. AEU-Int. J. Electron. Commun. 2017, 79, 43–52. [Google Scholar] [CrossRef]
- Diethelm, K. The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands, 1998; Volume 198. [Google Scholar]
- Alshabanat, A.; Jleli, M.; Kumar, S.; Samet, B. Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits. Front. Phys. 2020, 8, 64. [Google Scholar] [CrossRef]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
- Bhalekar, S.; Patil, M. Singular points in the solution trajectories of fractional order dynamical systems. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 113123. [Google Scholar] [CrossRef]
- Zhou, P.; Ma, J.; Tang, J. Clarify the physical process for fractional dynamical systems. Nonlinear Dyn. 2020, 100, 2353–2364. [Google Scholar] [CrossRef]
- Kaslik, E.; Sivasundaram, S. Nonlinear dynamics and chaos in fractional-order neural networks. Neural Netw. 2012, 32, 245–256. [Google Scholar] [CrossRef]
- Petráš, I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Carretón, B.F.; Pacheco, J.M.M.; Pavon, L.d.C.G.; Serrano, E.Z.; Hernández, A.A. On the dynamical behavior of a fractional-order chaotic cancer model with time-delay. In Proceedings of the 2021 IEEE International Summer Power Meeting/International Meeting on Communications and Computing (RVP-AI/ROC&C), Acapulco, Mexico, 14–18 November 2021; IEEE: New York, NY, USA, 2021; pp. 1–6. [Google Scholar]
- Medellín-Neri, N.; Munoz-Pacheco, J.; Félix-Beltrán, O.; Zambrano-Serrano, E. Analysis of a Variable-Order Multi-scroll Chaotic System with Different Memory Lengths. In Nonlinear Dynamics and Applications: Proceedings of the ICNDA 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1181–1191. [Google Scholar]
- Fernández-Carreón, B.; Munoz-Pacheco, J.; Zambrano-Serrano, E.; Félix-Beltrán, O. Analysis of a fractional-order glucose-insulin biological system with time delay. Chaos Theory Appl. 2022, 4, 10–18. [Google Scholar] [CrossRef]
- Tavazoei, M.S.; Haeri, M. Limitations of frequency domain approximation for detecting chaos in fractional order systems. Nonlinear Anal. Theory Methods Appl. 2008, 69, 1299–1320. [Google Scholar] [CrossRef]
- Doering, C.R.; Gibbon, J. On the shape and dimension of the Lorenz attractor. Dyn. Stab. Syst. 1995, 10, 255–268. [Google Scholar] [CrossRef]
- Starkov, K.E.; Loaiza, D.G. Localization of Compact Invariant Sets of One Plasma Dynamics Model; IASTED-International Association of Science and Technology for Development: Calgary, AB, Canada, 2011. [Google Scholar]
- Roupas, Z. Phase space geometry and chaotic attractors in dissipative Nambu mechanics. J. Phys. A Math. Theor. 2012, 45, 195101. [Google Scholar] [CrossRef]
- Weng, S.; Mi, S.; Li, D. Measure Attractors of Stochastic Fractional Lattice Systems. Fractal Fract. 2024, 8, 448. [Google Scholar] [CrossRef]
- Li, F.; Ma, J. Pattern selection in network of coupled multi-scroll attractors. PLoS ONE 2016, 11, e0154282. [Google Scholar] [CrossRef]
- Goluskin, D. Bounding extrema over global attractors using polynomial optimisation. Nonlinearity 2020, 33, 4878. [Google Scholar] [CrossRef]
- Echenausía-Monroy, J.L.; Gilardi-Velázquez, H.E.; Jaimes-Reátegui, R.; Aboites, V.; Huerta-Cuéllar, G. A physical interpretation of fractional-order-derivatives in a jerk system: Electronic approach. Commun. Nonlinear Sci. Numer. Simul. 2020, 90, 105413. [Google Scholar] [CrossRef]
- Nik, H.S.; Effati, S.; Saberi-Nadjafi, J. New ultimate bound sets and exponential finite-time synchronization for the complex Lorenz system. J. Complex. 2015, 31, 715–730. [Google Scholar]
- Mehrabbeik, M.; Jafari, S.; Ginoux, J.M.; Meucci, R. Multistability and its dependence on the attractor volume. Phys. Lett. A 2023, 485, 129088. [Google Scholar] [CrossRef]
- Butusov, D.; Karimov, A.; Tutueva, A.; Kaplun, D.; Nepomuceno, E.G. The effects of Padé numerical integration in simulation of conservative chaotic systems. Entropy 2019, 21, 362. [Google Scholar] [CrossRef]
- Sene, N. Study of a Fractional-Order Chaotic System Represented by the Caputo Operator. Complexity 2021, 2021, 5534872. [Google Scholar] [CrossRef]
- Akrami, M.H.; Owolabi, K.M. On the solution of fractional differential equations using Atangana’s beta derivative and its applications in chaotic systems. Sci. Afr. 2023, 21, e01879. [Google Scholar] [CrossRef]
- Kaplan, J.L.; Yorke, J.A. Preturbulence: A regime observed in a fluid flow model of Lorenz. Commun. Math. Phys. 1979, 67, 93–108. [Google Scholar] [CrossRef]
- Farmer, J.D.; Ott, E.; Yorke, J.A. The dimension of chaotic attractors. Phys. D Nonlinear Phenom. 1983, 7, 153–180. [Google Scholar] [CrossRef]
- Farmer, J.D. Dimension, fractal measures, and chaotic dynamics. In Evolution of Order and Chaos: In Physics, Chemistry, and Biology Proceedings of the International Symposium on Synergetics at Schloß Elmau, Bavaria, Germany, 26 April–1 May 1982; Springer: Berlin/Heidelberg, Germany, 1982; pp. 228–246. [Google Scholar]
- Clark, S.P. Estimating the fractal dimension of chaotic time series. Linc. Lab. J. 1990, 3, 63–86. [Google Scholar]
- Freistetter, F. Fractal dimensions as chaos indicators. Celest. Mech. Dyn. Astron. 2000, 78, 211–225. [Google Scholar] [CrossRef]
- Theme, P.S. Spatial Algorithms and Data Structures (Scipy.Spatial). Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.ConvexHull.html (accessed on 1 July 2024).
- The MathWorks, Inc. ConvexHull. Available online: https://la.mathworks.com/help/matlab/ref/convhull.html (accessed on 1 July 2024).
- The MathWorks, Inc. Boundary. Available online: https://la.mathworks.com/help/matlab/ref/boundary.html (accessed on 1 July 2024).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef]
- Echenausía-Monroy, J.L.; Huerta-Cuellar, G.; Jaimes-Reátegui, R.; García-López, J.H.; Aboites, V.; Cassal-Quiroga, B.B.; Gilardi-Velázquez, H.E. Multistability emergence through fractional-order-derivatives in a PWL multi-scroll system. Electronics 2020, 9, 880. [Google Scholar] [CrossRef]
- Garrappa, R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 2018, 6, 16. [Google Scholar] [CrossRef]
- Diethelm, K.; Ford, N.J.; Freed, A.D. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002, 29, 3–22. [Google Scholar] [CrossRef]
- Mainardi, F. ractional Calculus: Theory and Applications. Mathematics 2018, 6, 145. [Google Scholar] [CrossRef]
- Baker, G.L.; Gollub, J.P. Chaotic Dynamics: An Introduction; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Danca, M.F.; Kuznetsov, N. Matlab code for Lyapunov exponents of fractional-order systems. Int. J. Bifurc. Chaos 2018, 28, 1850067. [Google Scholar] [CrossRef]
- Alvarez, J.; Curiel, E.; Verduzco, F. Complex dynamics in classical control systems. Syst. Control Lett. 1997, 31, 277–285. [Google Scholar] [CrossRef]
- Echenausía-Monroy, J.; Gilardi-Velázquez, H.E.; Wang, N.; Jaimes-Reátegui, R.; García-López, J.; Huerta-Cuellar, G. Multistability route in a PWL multi-scroll system through fractional-order derivatives. Chaos Solitons Fractals 2022, 161, 112355. [Google Scholar] [CrossRef]
- Trejo-Guerra, R.; Tlelo-Cuautle, E.; Jimenez-Fuentes, J.; Sánchez-López, C.; Munoz-Pacheco, J.; Espinosa-Flores-Verdad, G.; Rocha-Perez, J. Integrated circuit generating 3-and 5-scroll attractors. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4328–4335. [Google Scholar] [CrossRef]
- Trejo-Guerra, R.; Tlelo-Cuautle, E.; Carbajal-Gómez, V.H.; Rodriguez-Gomez, G. A survey on the integrated design of chaotic oscillators. Appl. Math. Comput. 2013, 219, 5113–5122. [Google Scholar] [CrossRef]
- Echenausía-Monroy, J.; Cuesta-garcía, R.; Gilardi-velázquez, H.; Muni, S.S.; Alvarez-gallegos, J. Predicting Tipping Points in a Family of PWL Systems: Detecting Multistability via Linear Operators Properties. Chaos Theory Appl. 2024, 6, 73–82. [Google Scholar] [CrossRef]
q | ||||||
---|---|---|---|---|---|---|
1.9875 | 2.03493 | 153.69 | 4.18 | 6.65 | 48.00 | |
1.9988 | 2.03503 | 210.12 | 41.23 | 35.61 | 472.83 | |
2.1716 | 2.03507 | 244.05 | 100.67 | 69.70 | 1140.90 | |
1 | 2.2139 | 2.03515 | 282.56 | 206.91 | 122.83 | 2313.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echenausía-Monroy, J.L.; Quezada-Tellez, L.A.; Gilardi-Velázquez, H.E.; Ruíz-Martínez, O.F.; Heras-Sánchez, M.d.C.; Lozano-Rizk, J.E.; Cuesta-García, J.R.; Márquez-Martínez, L.A.; Rivera-Rodríguez, R.; Ramirez, J.P.; et al. Beyond Chaos in Fractional-Order Systems: Keen Insight in the Dynamic Effects. Fractal Fract. 2025, 9, 22. https://doi.org/10.3390/fractalfract9010022
Echenausía-Monroy JL, Quezada-Tellez LA, Gilardi-Velázquez HE, Ruíz-Martínez OF, Heras-Sánchez MdC, Lozano-Rizk JE, Cuesta-García JR, Márquez-Martínez LA, Rivera-Rodríguez R, Ramirez JP, et al. Beyond Chaos in Fractional-Order Systems: Keen Insight in the Dynamic Effects. Fractal and Fractional. 2025; 9(1):22. https://doi.org/10.3390/fractalfract9010022
Chicago/Turabian StyleEchenausía-Monroy, José Luis, Luis Alberto Quezada-Tellez, Hector Eduardo Gilardi-Velázquez, Omar Fernando Ruíz-Martínez, María del Carmen Heras-Sánchez, Jose E. Lozano-Rizk, José Ricardo Cuesta-García, Luis Alejandro Márquez-Martínez, Raúl Rivera-Rodríguez, Jonatan Pena Ramirez, and et al. 2025. "Beyond Chaos in Fractional-Order Systems: Keen Insight in the Dynamic Effects" Fractal and Fractional 9, no. 1: 22. https://doi.org/10.3390/fractalfract9010022
APA StyleEchenausía-Monroy, J. L., Quezada-Tellez, L. A., Gilardi-Velázquez, H. E., Ruíz-Martínez, O. F., Heras-Sánchez, M. d. C., Lozano-Rizk, J. E., Cuesta-García, J. R., Márquez-Martínez, L. A., Rivera-Rodríguez, R., Ramirez, J. P., & Álvarez, J. (2025). Beyond Chaos in Fractional-Order Systems: Keen Insight in the Dynamic Effects. Fractal and Fractional, 9(1), 22. https://doi.org/10.3390/fractalfract9010022