Forecasting Carbon Sequestration Potential in China’s Grasslands by a Grey Model with Fractional-Order Accumulation
<p>Influence factors of grasslands carbon sequestration.</p> "> Figure 2
<p>Distribution map of sample provinces.</p> "> Figure 3
<p>Prediction results for Xizang (Tibet) and Qinghai Province.</p> "> Figure 4
<p>Prediction results for Neimongolia–Ningxia-Gansu grassland region.</p> "> Figure 5
<p>Prediction results for Xinjiang grassland region.</p> "> Figure 6
<p>Prediction results for Sichuan and Yunnan Provinces.</p> "> Figure 7
<p>Prediction results for Heilongjiang Province.</p> ">
Abstract
:1. Introduction
2. Influence Factors of Grassland Carbon Sequestration
3. Materials
3.1. Research Area
3.2. Data Sources
4. Methods
4.1. Fractional-Order Accumulated Grey Model
4.2. Particle Swarm Optimization Algorithm
5. Prediction Results and Discussion
5.1. Prediction Results of the Tibetan Plateau Grassland Region
5.2. Prediction Results of the Neimongolia–Ningxia–Gansu Grassland Region
5.3. Prediction Results and Analysis for the Xinjiang Grassland Region
5.4. Prediction Results of the Southern Grassland Region
5.5. Prediction Results of the Northeast Grassland Region
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, F.; Li, Y.; Gao, Y.; Zhu, J.; Qin, C.; Zhang, X. Energy transition and carbon neutrality: Exploring the non-linear impact of renewable energy development on carbon emission efficiency in developed countries. Resour. Conserv. Recycl. 2022, 177, 106002. [Google Scholar] [CrossRef]
- Osland, M.J.; Gabler, C.A.; Grace, J.B.; Day, R.H.; McCoy, M.L.; Mcleod, J.L.; From, A.S.; Enwright, N.M.; Feher, L.C.; Stagg, C.L.; et al. Climate and plant controls on soil organic matter in coastal wetlands. Glob. Change Biol. 2018, 24, 5361–5379. [Google Scholar] [CrossRef] [PubMed]
- Noyce, G.L.; Kirwan, M.L.; Rich, R.L.; Megonigal, J.P. Asynchronous nitrogen supply and demand produce nonlinear plant allocation responses to warming and elevated CO2. Proc. Natl. Acad. Sci. USA 2019, 116, 21623–21628. [Google Scholar] [CrossRef] [PubMed]
- Lovelock, C.E.; Atwood, T.; Baldock, J.; Duarte, C.M.; Hickey, S.; Lavery, P.S.; Masque, P.; Macreadie, P.I.; Ricart, A.M.; Serrano, O.; et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front. Ecol. Environ. 2017, 15, 257–265. [Google Scholar] [CrossRef]
- Hua, F.; Wang, X.; Zheng, X.; Fisher, B.; Wang, L.; Zhu, J.; Tang, Y.; Yu, D.W.; Wilcove, D.S. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 2016, 7, 12717. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Miteva, D.A.; Schlesinger, W.H.; Shoch, D.; Siikamäki, J.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Qin, Z.; Deng, X.; Griscom, B.; Huang, Y.; Li, T.; Smith, P.; Yuan, W.; Zhang, W. Natural climate solutions for China: The last mile to carbon neutrality. Adv. Atmos. Sci. 2021, 38, 889–895. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Johnson, K.; Olson, R.J. Estimating net primary productivity from grassland biomass dynamics measurements. Glob. Change Biol. 2002, 8, 736–753. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Hall, D.O. The global carbon sink: A grassland perspective. Glob. Change Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Ahlström, A.; Raupach, M.R.; Schurgers, G.; Smith, B.; Arneth, A.; Jung, M.; Reichstein, M.; Canadell, J.G.; Friedlingstein, P.; Jain, A.K.; et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 2015, 348, 895–899. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Change Bio. 2014, 20, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Eze, S.; Palmer, S.M.; Chapman, P.J. Upland grasslands in Northern England were atmospheric carbon sinks regardless of management regimes. Agric. For. Meteorol. 2018, 256, 231–241. [Google Scholar] [CrossRef]
- Dass, P.; Houlton, B.Z.; Wang, Y.P.; Warlind, D. Grasslands may be more reliable carbon sinks than forests in California. Environ. Res. Lett. 2018, 13, 074027. [Google Scholar] [CrossRef]
- Ma, S.; Baldocchi, D.; Wolf, S.; Verfaillie, J. Slow ecosystem responses conditionally regulate annual carbon balance over 15 years in Californian oak-grass savanna. Agric. For. Meteorol. 2016, 228–229, 252–264. [Google Scholar] [CrossRef]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil carbon pools and world life zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hobbie, J.E.; Melillo, J.M.; Moore, B.; Peterson, B.J.; Shaver, G.R.; Woodwell, G.M. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: A net release of CO2 to the atmosphere. Ecol Monogr. 1983, 53, 235–262. [Google Scholar] [CrossRef]
- Carvalhais, N.; Forkel, M.; Khomik, M.; Bellarby, J.; Jung, M.; Migliavacca, M.; Mu, M.; Saatchi, S.; Santoro, M.; Thurner, M.; et al. Global covariation of carbon turnover times with climate in terrestrial ecosystems. Nature 2014, 514, 213–217. [Google Scholar] [CrossRef]
- Li, K.R.; Wang, S.Q.; Cao, M.K. Vegetation and soil carbon storage in China. Sci. China Ser. D Earth Sci. 2004, 47, 49–57. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, G.; Ji, Y.; Bai, Y. Spatiotemporal dynamic simulation of grassland carbon storage in China. J. Sci. China Earth Sci. 2016, 59, 1946–1958. [Google Scholar] [CrossRef]
- Xu, L.; Yu, G.; He, N. Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. Geogr. Sci. 2019, 29, 49–66. [Google Scholar] [CrossRef]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon pools in China’s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, S.; Yao, L.; Yan, S.; Liu, D. Grey system model with the fractional order accumulation. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 1775–1785. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Chen, D.; Yao, L.; Cui, W. Using gray model with fractional order accumulation to predict gas emission. Nat. Hazards 2014, 71, 2231–2236. [Google Scholar] [CrossRef]
- Wu, L. Using fractional GM (1, 1) model to predict the life of complex equipment. Grey Syst. Theory Appl. 2016, 6, 32–40. [Google Scholar] [CrossRef]
- Ma, X.; Wu, W.; Zeng, B.; Wang, Y.; Wu, X. The conformable fractional grey system model. ISA Trans. 2020, 96, 255–271. [Google Scholar] [CrossRef]
- Pei, L.; Liu, J. A Predictive Analysis of the Business Environment of Economies along the Belt and Road Using the Fractional-Order Grey Model. J. Math. 2021, 2021, 3153731. [Google Scholar] [CrossRef]
- Xu, Y.; Thien, S.L.; Wang, K. Prediction of farmers’ income in Hebei Province based on the Fractional Grey Model (1, 1). J. Math. 2021, 2021, 4869135. [Google Scholar] [CrossRef]
- Gu, H.; Yin, K. Forecasting algae and shellfish carbon sink capability on fractional order accumulation grey model. Math. Biosci. Eng. 2022, 19, 5409–5427. [Google Scholar] [CrossRef]
- Chen, S.; Wang, W.; Xu, W.; Wang, Y.; Wan, H.; Chen, D.; Tang, Z.; Tang, X.; Zhou, G.; Xie, Z.; et al. Plant diversity enhances productivity and soil carbon storage. Proc. Natl. Acad. Sci. USA 2018, 115, 4027–4032. [Google Scholar] [CrossRef]
- Isbell, F.; Calcagno, V.; Hector, A.; Connolly, J.; Harpole, W.S.; Reich, P.B.; Scherer-Lorenzen, M.; Schmid, B.; Tilman, D.; Ruijven, J.; et al. High plant diversity is needed to maintain ecosystem services. Nature 2011, 477, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Hector, A.; Hautier, Y.; Saner, P.; Wacker, L.; Bagchi, R.; Joshi, J.; Scherer-Lorenzen, M.; Spehn, E.M.; Bazeley-White, E.; Weilenmann, M.; et al. General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 2010, 91, 2213–2220. [Google Scholar] [CrossRef] [PubMed]
- Fornara, D.A.; Tilman, D. Soil carbon sequestration in prairie grasslands increased by chronic nitrogen addition. Ecology 2012, 93, 2030–2036. [Google Scholar] [CrossRef] [PubMed]
- Albaladejo, J.; Ortiz, R.; Garcia-Franco, N.; Navarro, A.R.; Almagro, M.; Pintado, J.G.; Martínez-Mena, M. Land use and climate change impacts on soil organic carbon stocks in semi-arid Spain. J. Soils Sediments 2013, 13, 265–277. [Google Scholar] [CrossRef]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef]
- Knorr, M.; Frey, S.D.; Curtis, P.S. Nitrogen additions and litter decomposition: A meta-analysis. Ecology 2005, 86, 3252–3257. [Google Scholar] [CrossRef]
- Piao, S.; Tan, K.; Nan, H.; Ciais, P.; Fang, J.; Wang, T.; Vuichard, N.; Zhu, B. Impacts of climate and CO2 changes on the vegetation growth and carbon balance of Qinghai–Tibetan grasslands over the past five decades. Glob. Planet. Change 2012, 98, 73–80. [Google Scholar] [CrossRef]
- Kellomäki, S.; Wang, K.Y. Photosynthetic responses to needle water potentials in Scots pine after a four-year exposure to elevated CO2 and temperature. Tree Physiol. 1996, 16, 765–772. [Google Scholar] [CrossRef]
- Atkin, O.K.; Tjoelker, M.G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 2003, 8, 343–351. [Google Scholar] [CrossRef]
- Chou, W.W.; Silver, W.L.; Jackson, R.D.; Thompson, A.W.; Allen-diaz, B. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob. Change Biol. 2008, 14, 1382–1394. [Google Scholar] [CrossRef]
- Peri, P.L.; Lasagno, R.G. Biomass, carbon and nutrient storage for dominant grasses of cold temperate steppe grasslands in southern Patagonia, Argentina. Arid Environ. 2010, 74, 23–34. [Google Scholar] [CrossRef]
- Orchard, V.A.; Cook, F.J.; Corderoy, D.M. Field and laboratory studies on the relationships between respiration and moisture of two soils of contrasting fertility status. Pedobiologia 1992, 36, 21–33. [Google Scholar] [CrossRef]
- Patrick, L.D.; Ogle, K.; Bell, C.W.; Zak, J.; Tissue, D. Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamics. Glob. Chang. Biol. 2009, 15, 1214–1229. [Google Scholar] [CrossRef]
- Clair, S.B.; Sudderth, E.A.; Fischer, M.L.; Torn, M.S.; Stuart, S.A.; Salve, R.; Eggett, D.L.; Ackerly, D.D. Soil drying and nitrogen availability modulate carbon and water exchange over a range of annual precipitation totals and grassland vegetation types. Glob. Change Biol. 2009, 15, 3018–3030. [Google Scholar] [CrossRef]
- Frank, D.A. Drought effects on above-and belowground production of a grazed temperate grassland ecosystem. Oecologia 2007, 152, 131–139. [Google Scholar] [CrossRef]
- Smith, M.D. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol. 2011, 99, 656–663. [Google Scholar] [CrossRef]
- Reid, J.P.; Adair, E.C.; Hobbie, S.E.; Reich, P.B. Biodiversity, nitrogen deposition, and CO2 affect grassland soil carbon cycling but not storage. Ecosystems 2012, 15, 580–590. [Google Scholar] [CrossRef]
- Bagchi, S.; Ritchie, M.E. Introduced grazers can restrict potential soil carbon sequestration through impacts on plant community composition. Ecol. Lett. 2010, 13, 959–968. [Google Scholar] [CrossRef]
- Shitzer, D.; Noy-Meir, I.; Milchunas, D.G. The role of geologic grazing refuges in structuring Mediterranean grassland plant communities. Plant Ecol. 2008, 198, 135–147. [Google Scholar] [CrossRef]
- Marriott, C.A.; Hood, K.; Fisher, J.M.; Pakeman, R.J. Long-term impacts of extensive grazing and abandonment on the species composition, richness, diversity and productivity of agricultural grassland. Agric. Ecosyst. Environ. 2009, 134, 190–200. [Google Scholar] [CrossRef]
- Reeder, J.D.; Schuman, G.E.; Morgan, J.A.; Lecain, D.R. Response of organic and inorganic carbon and nitrogen to long-term grazing of the shortgrass steppe. Environ. Manag. 2004, 33, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Gibson, R.; Hewitt, A.; Sparling, G.; Bosch, O. Vegetation change and soil quality in central Otago Tussock grasslands, New Zealand. Rangel. J. 2000, 22, 190–204. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, S.; Wei, P. Effect of revegetation in extremely degraded grassland on carbon density in Alpine Permafrost regions. Sustainability 2022, 14, 12575. [Google Scholar] [CrossRef]
- Harris, W.N.; Moretto, A.S.; Distel, R.A.; Boutton, T.W.; Bóo, R.M. Fire and grazing in grasslands of the Argentine Caldenal: Effects on plant and soil carbon and nitrogen. Acta Oecol. 2007, 32, 207–214. [Google Scholar] [CrossRef]
- Hoshino, A.; Tamura, K.; Fujimaki, H.; Asano, M.; Ose, K.; Higashi, T. Effects of crop abandonment and grazing exclusion on available soil water and other soil properties in a semi-arid Mongolian grassland. Soil Tillage Res. 2009, 105, 228–235. [Google Scholar] [CrossRef]
- Lamb, E.G. Direct and indirect control of grassland community structure by litter, resources, and biomass. Ecology 2008, 89, 216–225. [Google Scholar] [CrossRef]
- Wu, L.; He, N.; Wang, Y.; Han, X. Storage and dynamics of carbon and nitrogen in soil after grazing exclusion in Leymus chinensis grasslands of northern China. Environ. Qual. 2008, 37, 663–668. [Google Scholar] [CrossRef]
- Qiu, L.P.; Wei, X.R.; Zhang, X.C.; Chen, J. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland. PLoS ONE 2013, 8, e55433. [Google Scholar] [CrossRef]
- Fan, Y.M.; Sun, Z.J.; Wu, H.Q.; Liu, X.M. Influences of fencing on vegetation and soil properties in mountain steppe. Pratacultural Sci. 2009, 26, 79–82. (In Chinese) [Google Scholar]
- Sousa, F.P.; Ferreira, T.O.; Mendonça, E.S.; Romero, R.E.; Oliveira, J.G.B. Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification. Agric. Ecosyst. Environ. 2012, 148, 11–21. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Ni, J. Carbon storage in grasslands of China. Arid Environ. 2002, 50, 205–218. [Google Scholar] [CrossRef]
- Song, M.; Liu, B.; Ge, Y.P. Evaluation and improvement of carbon sink capacity of regional ecosystem: A case study of Ningxia Hui autonomous region. Nat. Resour. Econ. China 2023, 36, 73–79+89. (In Chinese) [Google Scholar]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November 27–1 December 1995; pp. 1942–1948. [Google Scholar]
- Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
Xizang (Tibet) | Neimenggu | Qinghai | Xinjiang | Sichuan | Gansu | Shanxi | Ningxia | Hebei | Yunnan | Heilongjiang | |
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 879,376 | 544,580 | 457,787 | 377,747 | 161,058 | 157,440 | 52,493 | 34,516 | 32,442 | 23,850 | 6472 |
2019 | 881,645 | 546,044 | 454,948 | 377,731 | 160,594 | 155,182 | 50,601 | 34,237 | 31,557 | 23,267 | 5545 |
2020 | 881,697 | 548,986 | 452,485 | 374,908 | 160,026 | 153,048 | 49,010 | 34,161 | 31,646 | 22,154 | 6007 |
2021 | 882,649 | 548,133 | 452,116 | 374,722 | 159,939 | 152,567 | 48,260 | 34,097 | 31,409 | 21,884 | 6155 |
2022 | 884,822 | 542,587 | 452,023 | 372,212 | 158,765 | 151,216 | 46,806 | 33,987 | 31,138 | 21,005 | 6617 |
Grassland Region | Vegetation Carbon Density (g C m−2) | Soil Carbon Density (kg C m−2) | Total Carbon Density (kg C m−2) |
---|---|---|---|
Tibetan Plateau | 1241 | 21.7 | 21.7 |
Neimongolia Plateau | 205 | 7.7 | 7.9 |
Xinjiang | 409 | 13.8 | 14.2 |
Southern | 840 | 1.3 | 2.1 |
Loess Plateau | 538 | 6.0 | 6.5 |
North Warm Temperate | 1010 | 7.6 | 8.6 |
Northeast | 1202 | 18.3 | 19.5 |
Year | Xizang (Tibet) | Neimenggu | Qinghai | Xinjiang | Sichuan | Gansu | Shanxi | Ningxia | Hebei | Yunnan | Heilongjiang |
---|---|---|---|---|---|---|---|---|---|---|---|
2018 | 19.0824 | 4.3022 | 9.9340 | 5.3640 | 0.3382 | 2.3301 | 0.3412 | 0.2485 | 0.2790 | 0.0501 | 0.1262 |
2019 | 19.1317 | 4.3137 | 9.8724 | 5.3638 | 0.3372 | 2.2967 | 0.3289 | 0.2465 | 0.2714 | 0.0489 | 0.1081 |
2020 | 19.1328 | 4.3370 | 9.8189 | 5.3237 | 0.3361 | 2.2654 | 0.3186 | 0.2452 | 0.2721 | 0.0465 | 0.1171 |
2021 | 19.1535 | 4.3303 | 9.8109 | 5.3210 | 0.3359 | 2.2580 | 0.3137 | 0.2455 | 0.2701 | 0.0460 | 0.1200 |
2022 | 19.2006 | 4.2864 | 9.8091 | 5.2854 | 0.3334 | 2.2380 | 0.3042 | 0.2447 | 0.2678 | 0.0441 | 0.1290 |
Year | Actual Value (1012 kg) | 0.3-Order Fitted Value (1012 kg) | 1-Order Fitted Value (1012 kg) |
---|---|---|---|
2018 | 23.3235 | 23.3235 | 23.3235 |
2019 | 23.1876 | 23.1866 | 23.1863 |
2020 | 23.0806 | 23.1813 | 23.1815 |
2021 | 23.0513 | 23.0518 | 23.0526 |
2022 | 22.9422 | 22.9434 | 22.9437 |
MAPE (%) | 1.74 | 3.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, L.; Wang, C.; Wang, C.; Gong, W. Forecasting Carbon Sequestration Potential in China’s Grasslands by a Grey Model with Fractional-Order Accumulation. Fractal Fract. 2024, 8, 536. https://doi.org/10.3390/fractalfract8090536
Wu L, Wang C, Wang C, Gong W. Forecasting Carbon Sequestration Potential in China’s Grasslands by a Grey Model with Fractional-Order Accumulation. Fractal and Fractional. 2024; 8(9):536. https://doi.org/10.3390/fractalfract8090536
Chicago/Turabian StyleWu, Lei, Chun Wang, Chuanhui Wang, and Weifeng Gong. 2024. "Forecasting Carbon Sequestration Potential in China’s Grasslands by a Grey Model with Fractional-Order Accumulation" Fractal and Fractional 8, no. 9: 536. https://doi.org/10.3390/fractalfract8090536
APA StyleWu, L., Wang, C., Wang, C., & Gong, W. (2024). Forecasting Carbon Sequestration Potential in China’s Grasslands by a Grey Model with Fractional-Order Accumulation. Fractal and Fractional, 8(9), 536. https://doi.org/10.3390/fractalfract8090536