[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Climate extremes and the carbon cycle

Abstract

The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake. Here we explore the mechanisms and impacts of climate extremes on the terrestrial carbon cycle, and propose a pathway to improve our understanding of present and future impacts of climate extremes on the terrestrial carbon budget.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Processes and feedbacks triggered by extreme climate events.
Figure 2: Overview of how carbon flows may be triggered, or greatly altered, by extreme events.
Figure 3: Global impact of extreme events on the carbon cycle.

Similar content being viewed by others

References

  1. Le Quéré, C., Raupach, M. R., Canadell, J. G. & Marland, G. Trends in the sources and sinks of carbon dioxide. Nature Geosci. 2, 831–836 (2009)

    Article  ADS  Google Scholar 

  2. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006)

    Article  ADS  Google Scholar 

  4. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).In this full overview of the CMIP5 modelling experiment, the results of which are publicly available, the model simulations from BCC-CSM1.1, CanESM2, CCSM4, GFDL-ESM2G, HADGEM2-CC, HadGEM2-ES, INM-CM4, IPSL-CM5A-LR/MR, MIROC-ESM-(CHEM), MPI_ESM-LR and Nor ESM1-M have been used.

    Article  ADS  Google Scholar 

  5. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).This integrated data and modelling analysis showed that the extreme European heatwave 2003 undid 3–5 years of mean carbon sequestration.

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Zeng, H. C. et al. Impacts of tropical cyclones on U.S. forest tree mortality and carbon flux from 1851 to 2000. Proc. Natl Acad. Sci. USA 106, 7888–7892 (2009)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  7. Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002)

    Article  CAS  ADS  PubMed  Google Scholar 

  8. Kurz, W. A. et al. Mountain pine beetle and forest carbon feedback to climate change. Nature 452, 987–990 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  9. Van Oost, K. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629 (2007).This paper estimated the net effect of erosion given sources and sinks induced by the transported material.

    Article  CAS  ADS  PubMed  Google Scholar 

  10. Anderegg, W. R. et al. The roles of hydraulic and carbon stress in a widespread climate-induced forest die-off. Proc. Natl Acad. Sci. USA 109, 233–237 (2012).This is a comprehensive analysis of mechanisms causing drought-related tree mortality.

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Coles, S. G. An Introduction to Statistical Modeling of Extreme Values (Springer, 2001)

    Book  MATH  Google Scholar 

  12. Seneviratne, S. I. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC SREX Report) (eds Field, C. B. et al.) 109–230 (Cambridge Univ. Press, 2012).This report gives a full assessment of the observed past and projected future occurrence and severity of climate extremes.

  13. Smith, M. D. An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).This paper introduced the ecosystem-impact-oriented perspective on climate extremes.

    Article  Google Scholar 

  14. Ghil, M. et al. Extreme events: dynamics, statistics and prediction. Nonlinear Process. Geophys. 18, 295–350 (2011)

    Article  ADS  Google Scholar 

  15. Arnone, J. A., III et al. Prolonged suppression of ecosystem carbon dioxide uptake after an anomalously warm year. Nature 455, 383–386 (2008).This was the first experimental study showing evidence for year-long lag effects of temperature extremes without involvement of mortality.

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Muhr, J., Borken, W. & Matzner, E. Effects of soil frost on soil respiration and its radiocarbon signature in a Norway spruce forest soil. Glob. Change Biol. 15, 782–793 (2009)

    Article  ADS  Google Scholar 

  17. Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 63, 625–644 (2006)

    Article  Google Scholar 

  18. Bigler, C., Gavin, D. G., Gunning, C. & Veblen, T. T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116, 1983–1994 (2007)

    Article  Google Scholar 

  19. Adams, H. D. et al. Climate-induced tree mortality: Earth system consequences. Eos 91, 153–154 (2010)

    Article  ADS  Google Scholar 

  20. Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009)

    Article  PubMed  Google Scholar 

  21. Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition—is there a link to extreme climatic events? Glob. Change Biol. 17, 2640–2656 (2011).This paper reviews how soil hydrological properties change persistently in response to climate extremes.

    Article  ADS  Google Scholar 

  22. de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nature Clim. Change 2, 276–280 (2012)

    Article  ADS  Google Scholar 

  23. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  24. De Boeck, H. & Verbeeck, H. Drought-associated changes in climate and their relevance for ecosystem experiments and models. Biogeosciences 8, 1121–1130 (2011)

    Article  ADS  Google Scholar 

  25. Seneviratne, S. I., Lüthi, D., Litschi, M. & Schär, C. Land-atmosphere coupling and climate change in Europe. Nature 443, 205–209 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012)

    Article  CAS  ADS  PubMed  Google Scholar 

  27. Reichstein, M. et al. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: a joint flux tower, remote sensing and modelling analysis. Glob. Change Biol. 13, 634–651 (2007)

    Article  ADS  Google Scholar 

  28. Granier, A. et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. For. Meteorol. 143, 123–145 (2007)

    Article  ADS  Google Scholar 

  29. Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).This is a global assessment of tree mortality in the context of climate change.

    Article  Google Scholar 

  30. Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  31. van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  32. Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

  33. Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007)

    Article  PubMed  Google Scholar 

  34. Fuhrer, J. et al. Climate risks and their impact on agriculture and forests in Switzerland. Clim. Change 79, 79–102 (2006)

    Article  CAS  ADS  Google Scholar 

  35. Lindroth, A. et al. Storms can cause Europe-wide reduction in forest carbon sink. Glob. Change Biol. 15, 346–355 (2009)

    Article  ADS  Google Scholar 

  36. Chambers, J. Q. et al. Hurricane Katrina’s carbon footprint on U.S. Gulf Coast forests. Science 318, 1107 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  37. Negrón-Juárez, R., Baker, D. B., Zeng, H., Henkel, T. K. & Chambers, J. Q. Assessing hurricane-induced tree mortality in U.S. Gulf Coast forest ecosystems. J. Geophys. Res. 115 G04030 (2010)

  38. Negrón-Juárez, R. I. et al. Widespread Amazon forest tree mortality from a single cross-basin squall line event. Geophys. Res. Lett. 37, L16701 (2010)

    Article  ADS  Google Scholar 

  39. van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010)

    Article  CAS  ADS  Google Scholar 

  40. Alencar, A., Nepstad, D. & Vera Diaz, M. C. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interact. 10, 1–17 (2006)

  41. van der Werf, G. R. et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science 303, 73–76 (2004)

    Article  CAS  ADS  PubMed  Google Scholar 

  42. Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011)

    Article  ADS  Google Scholar 

  43. Yu, Z. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9, 4071–4085 (2012)

    Article  CAS  ADS  Google Scholar 

  44. Dinsmore, K. J. et al. Role of the aquatic pathway in the carbon and greenhouse gas budgets of a peatland catchment. Glob. Change Biol. 16, 2750–2762 (2010)

    Article  ADS  Google Scholar 

  45. Marcolla, B. et al. Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow. Agric. For. Meteorol. 151, 1233–1243 (2011)

    Article  ADS  Google Scholar 

  46. Zavalloni, C. et al. Does a warmer climate with frequent mild water shortages protect grassland communities against a prolonged drought? Plant Soil 308, 119–130 (2008)

    Article  CAS  Google Scholar 

  47. Gilgen, A. K. & Buchmann, N. Response of temperate grasslands at different altitudes to simulated summer drought differed but scaled with annual precipitation. Biogeosciences 6, 2525–2539 (2009)

    Article  ADS  Google Scholar 

  48. De Boeck, H. J., Dreesen, F. E., Janssens, I. A. & Nijs, I. Whole-system responses of experimental plant communities to climate extremes imposed in different seasons. New Phytol. 189, 806–817 (2011)

    Article  PubMed  Google Scholar 

  49. Lobell, D. B., Sibley, A. & Ortiz-Monasterio, J. I. Extreme heat effects on wheat senescence in India. Nature Clim. Change 2, 186–189 (2012)

    Article  ADS  Google Scholar 

  50. Porter, J. R. & Semenov, M. A. Crop responses to climatic variation. Phil. Trans. R. Soc. Lond. B 360, 2021–2035 (2005)

    Article  Google Scholar 

  51. Matsui, T., Namuco, O. S., Ziska, L. H. & Horie, T. Effects of high temperature and CO2 concentration on spikelet sterility in indica rice. Field Crops Res. 51, 213–219 (1997)

    Article  Google Scholar 

  52. van der Velde, M., Tubiello, F. N., Vrieling, A. & Bouraoui, F. Impacts of extreme weather on wheat and maize in France: evaluating regional crop simulations against observed data. Clim. Change 113, 751–765 (2012)

    Article  ADS  Google Scholar 

  53. Aubinet, M. et al. Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle. Agric. For. Meteorol. 149, 407–418 (2009)

    Article  ADS  Google Scholar 

  54. Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010)

    Article  CAS  ADS  PubMed  Google Scholar 

  55. Schwalm, C. R. et al. Assimilation exceeds respiration sensitivity to drought: a FLUXNET synthesis. Glob. Change Biol. 16, 657–670 (2010)

    Article  ADS  Google Scholar 

  56. Zscheischler, J., Mahecha, M. D., Harmeling, S. & Reichstein, M. Detection and attribution of large spatiotemporal extreme events in Earth observation data. Ecol. Inform. 15, 66–73 (2013).This was the first analysis of spatiotemporally contiguous carbon-cycle extremes.

    Article  Google Scholar 

  57. Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).This was the first completely data-driven analysis of joint global carbon, water and sensible heat fluxes.

    Article  Google Scholar 

  58. Fisher, J. I., Hurtt, G. C., Thomas, R. Q. & Chambers, J. Q. Clustered disturbances lead to bias in large-scale estimates based on forest sample plots. Ecol. Lett. 11, 554–563 (2008)

    Article  PubMed  Google Scholar 

  59. Luyssaert, S. et al. The European land and inland water CO2, CO, CH4 and N2O balance between 2001 and 2005. Biogeosciences 9, 3357–3380 (2012)

    Article  CAS  ADS  Google Scholar 

  60. Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci. 3, 311–314 (2010)

    Article  CAS  ADS  Google Scholar 

  61. Peters, W. et al. Seven years of recent European net terrestrial carbon dioxide exchange constrained by atmospheric observations. Glob. Change Biol. 16, 1317–1337 (2010)

    Article  ADS  Google Scholar 

  62. Ballantyne, A., Alden, C., Miller, J., Tans, P. & White, J. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–72 (2012)

    Article  CAS  ADS  PubMed  Google Scholar 

  63. Schulze, E.-D., Wirth, C. & Heimann, M. Managing forests after Kyoto. Science 289, 2058–2059 (2000)

    Article  CAS  PubMed  Google Scholar 

  64. Baldocchi, D. et al. The role of trace gas flux networks in the biogeosciences. Eos 93, 217 (2012)

    Article  ADS  Google Scholar 

  65. Babst, F. et al. 500 years of regional forest growth variability and links to climatic extreme events in Europe. Environ. Res. Lett. 7, 045705 (2012)

    Article  ADS  Google Scholar 

  66. Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  67. Kanamori, H. Real-time seismology and earthquake damage mitigation. Annu. Rev. Earth Planet. Sci. 33, 195–214 (2005)

    Article  CAS  ADS  Google Scholar 

  68. Paris, J.-D. et al. in EGU General Assembly Conf. Abstr. 12397 (European Geophysical Union, 2012)

  69. Seneviratne, S. I. et al. Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).This is a comprehensive review of aspects of soil moisture in the climate system with emphasis on regional feedbacks and observational needs.

    Article  CAS  ADS  Google Scholar 

  70. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)

    Article  CAS  ADS  PubMed  Google Scholar 

  71. Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate-change experiments: events, not trends. Front. Ecol. Environ 5, 365–374 (2007)

    Article  Google Scholar 

  72. Beier, C. et al. Precipitation manipulation experiments—challenges and recommendations for the future. Ecol. Lett. 15, 899–911 (2012)

    Article  PubMed  Google Scholar 

  73. Vicca, S. et al. Urgent need for a common metric to make precipitation manipulation experiments comparable. New Phytol. 195, 518–522 (2012)

    Article  CAS  PubMed  Google Scholar 

  74. Schiermeier, Q. The real holes in climate science. Nature 463, 284–287 (2010)

    Article  CAS  PubMed  Google Scholar 

  75. Stevens, B. & Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607–613 (2009)

    Article  CAS  ADS  PubMed  Google Scholar 

  76. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western U.S. forest wildfire activity. Science 313, 940–943 (2006)

    Article  CAS  ADS  PubMed  Google Scholar 

  77. Moreira, F. et al. Landscape–wildfire interactions in southern Europe: implications for landscape management. J. Environ. Manage. 92, 2389–2402 (2011)

    Article  PubMed  Google Scholar 

  78. Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian drought. Geophys. Res. Lett. 34, L07701 (2007)

    Article  ADS  Google Scholar 

  79. Sperry, J. S. & Sullivan, J. E. M. Xylem embolism in response to freeze-thaw cycles and water-stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 100, 605–613 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sun, Y., Gu, L., Dickinson, R. E. & Zhou, B. Forest greenness after the massive 2008 Chinese ice storm: integrated effects of natural processes and human intervention. Environ. Res. Lett. 7, 035702 (2012)

    Article  ADS  Google Scholar 

  81. Irland, L. C. Ice storms and forest impacts. Sci. Total Environ. 262, 231–242 (2000)

    Article  CAS  ADS  PubMed  Google Scholar 

  82. Changnon, S. A. Characteristics of ice storms in the United States. J. Appl. Meteorol. 42, 630–639 (2003)

    Article  ADS  Google Scholar 

  83. Knapp, A. K. et al. Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298, 2202–2205 (2002).This is a classic paper showing the importance of precipitation variability (compared to mean precipitation) for net primary production.

    Article  CAS  ADS  PubMed  Google Scholar 

  84. Craine, J. M. et al. Timing of climate variability and grassland productivity. Proc. Natl Acad. Sci. USA 109, 3401–3405 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  85. Smit, H., Metzger, M. & Ewert, F. Spatial distribution of grassland productivity and land use in Europe. Agric. Syst. 98, 208–219 (2008)

    Article  Google Scholar 

  86. Wang, Y. et al. The fluxes of CO2 from grazed and fenced temperate steppe during two drought years on the Inner Mongolia Plateau, China. Sci. Total Environ. 410–411, 182–190 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. Wang, X., Oenema, O., Hoogmoed, W. B., Perdok, U. D. & Cai, D. Dust storm erosion and its impact on soil carbon and nitrogen losses in northern China. Catena 66, 221–227 (2006)

    Article  Google Scholar 

  88. Changnon, S. A. Impacts of 1997–98 El Niño-generated weather in the United States. Bull. Am. Meteorol. Soc. 80, 1819–1827 (1999)

    Article  ADS  Google Scholar 

  89. Zhao, Y., Wang, C., Wang, S. & Tibig, L. V. Impacts of present and future climate variability on agriculture and forestry in the humid and sub-humid tropics. Clim. Change 70, 73–116 (2005)

    Article  ADS  Google Scholar 

  90. Rosenzweig, C., Tubiello, F. N., Goldberg, R., Mills, E. & Bloomfield, J. Increased crop damage in the US from excess precipitation under climate change. Glob. Environ. Change 12, 197–202 (2002)

    Article  Google Scholar 

  91. Niall, S. & Walsh, K. The impact of climate change on hailstorms in southeastern Australia. Int. J. Climatol. 25, 1933–1952 (2005)

    Article  Google Scholar 

  92. Sánchez, J. L. & Fraile, R. Crop damage: the hail size factor. J. Appl. Meteorol. 35.9, 1535–1541 (1996)

    Article  ADS  Google Scholar 

  93. van der Velde, M., Wriedt, G. & Bouraoui, F. Estimating irrigation use and effects on maize yield during the 2003 heatwave in France. Agric. Ecosyst. Environ. 135, 90–97 (2010)

    Article  Google Scholar 

  94. Jung, B.-J. et al. Storm pulses and varying sources of hydrologic carbon export from a mountainous watershed. J. Hydrol. 440–441, 90–101 (2012)

    Article  CAS  Google Scholar 

  95. Chen, G. et al. Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim. Change 114, 379–397 (2012)

    Article  CAS  ADS  Google Scholar 

  96. Simelton, E. Food self-sufficiency and natural hazards in China. Food Security 3, 35–52 (2011)

    Article  Google Scholar 

  97. Gu, L. et al. The 2007 eastern US spring freezes: increased cold damage in a warming world? Bioscience 58, 253–262 (2008)

    Article  Google Scholar 

  98. Zheng, B. Y., Chenu, K., Dreccer, M. F. & Chapman, S. C. Breeding for the future: what are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivium) varieties? Glob. Change Biol. 18, 2899–2914 (2012)

    Article  ADS  Google Scholar 

  99. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011)

    Article  CAS  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

This work emerged from the CARBO-Extreme project, funded by the European Community’s Seventh Framework Programme under grant agreement (FP7-ENV-2008-1-226701). We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups (listed in the reference annotation to ref. 4 of this paper) for producing and making available their model output. For CMIP the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. J.Z. is part of the International Max Planck Research School for Global Biogeochemical Cycles. P.S. is a Royal Society–Wolfson Research Merit Award holder. S.V. is a postdoctoral research associate of the Fund for Scientific Research—Flanders. M.B. acknowledges the Austrian Science Fund (FWF).

Author information

Authors and Affiliations

Authors

Contributions

M.R., M.B., P.C. and S.I.S. conceived and designed the manuscript. D.F., M.R. and M.B. created Fig. 1, M.R. created Fig. 2 and M.D.M. and J.Z. created Fig. 3, with associated analysis and interpretation. The other co-authors contributed to specific sections. M.R. wrote the manuscript with comments and contributions from all other authors.

Corresponding author

Correspondence to Markus Reichstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reichstein, M., Bahn, M., Ciais, P. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013). https://doi.org/10.1038/nature12350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12350

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology