Multi-Point Seawall Settlement Prediction with Limited Data Volume Using an Improved Fractional-Order Grey Model
<p>Working principle of genetic algorithm-based optimization.</p> "> Figure 2
<p>Schematic representation of the real-time tracing algorithm.</p> "> Figure 3
<p>Flowchart of the proposed model.</p> "> Figure 4
<p>The (<b>a</b>) geographic location and (<b>b</b>) air-view of the Haiyan seawall.</p> "> Figure 5
<p>The distribution of the soil layers and monitoring points at the Haiyan seawall.</p> "> Figure 6
<p>Time variation in the monitored settlement at monitoring points SS5, SS6, SS7, and SS8.</p> "> Figure 7
<p>Evolution of fractional order <span class="html-italic">r</span> and <span class="html-italic">f</span> (<span class="html-italic">r</span>).</p> "> Figure 8
<p>Time evolution of the predicted and monitored settlement at the selected monitoring points: (<b>a</b>) SS5, (<b>b</b>) SS6, (<b>c</b>) SS7, (<b>d</b>) SS8.</p> "> Figure 9
<p>Time evolution of the relative residual of the predicted and monitored settlement at each monitoring points: (<b>a</b>) SS5, (<b>b</b>) SS6, (<b>c</b>) SS7, (<b>d</b>) SS8.</p> "> Figure 10
<p>Time evolution of fitting and predicting results of seawall settlement at the selected monitoring points using the four selected models: (<b>a</b>) SS5, (<b>b</b>) SS6, (<b>c</b>) SS7, (<b>d</b>) SS8.</p> "> Figure 11
<p>Time evolution of the relative residual of seawall settlement at the selected monitoring points using the four selected models: (<b>a</b>) SS5, (<b>b</b>) SS6, (<b>c</b>) SS7, (<b>d</b>) SS8.</p> "> Figure 12
<p>Comparison of the R<sup>2</sup> of the fitting and testing data at each monitoring point: (<b>a</b>) SS5, (<b>b</b>) SS6, (<b>c</b>) SS7, (<b>d</b>) SS8 using the four selected models.</p> "> Figure 13
<p>Comparison of the MRE of the fitting and testing data at each monitoring point: (<b>a</b>) SS5, (<b>b</b>) SS6, (<b>c</b>) SS7, (<b>d</b>) SS8 using the four selected models.</p> ">
Abstract
:1. Introduction
2. Model Development
2.1. Establishment of the Fractional-Order Grey Model
2.2. Fractional-Order Optimization Using Genetic Algorithm
2.3. Equal-Dimensionally Recursive Calculation Using the Real-Time Tracing Algorithm
3. Case Study
4. Results and Discussions
4.1. Intermediate Calculation and Prediction Results
4.2. The Evaluation Criteria of Prediction Performance
4.3. Comparison of the Proposed Model with Other Relevant Models
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, H.; Qin, P.; Qin, Z. A method for evaluating sea dike safety. Water Resour. Manag. 2013, 27, 5157–5170. [Google Scholar] [CrossRef]
- Qin, P.; Jiang, Y.; Cheng, C. How Do Structural Safety, Ecological Functions and Social Development Influence Construction of Ecological Seawalls for Coastal Protection and Sustainability? Water Resour. Manag. 2024, 38, 1807–1824. [Google Scholar] [CrossRef]
- Feng, W.Q.; Yin, J.H.; Chen, W.B.; Tan, D.Y.; Wu, P.C. A new simplified method for calculating consolidation settlement of multi-layer soft soils with creep under multi-stage ramp loading. Eng. Geol. 2020, 264, 105322. [Google Scholar] [CrossRef]
- Bayesteh, H.; Mansouriboroujeni, R. Mechanisms of settlement of a rubble mound breakwater on a soft soil in tidal flats. Mar. Georesour. Geotechnol. 2020, 38, 1163–1176. [Google Scholar] [CrossRef]
- Wu, X.T.; Liu, J.N.; Xie, Z.M. Deformation and Strength Characteristics of Marine Soft Soil Treated by Prefabricated Vertical Drain-Assisted Staged Riprap under Seawall Construction. Buildings 2023, 13, 2322. [Google Scholar] [CrossRef]
- Meng, Z.; Wang, Y.; Zheng, S.; Wang, X.; Liu, D.; Zhang, J.; Shao, Y. Abnormal Monitoring Data Detection Based on Matrix Manipulation and the Cuckoo Search Algorithm. Mathematics 2024, 12, 1345. [Google Scholar] [CrossRef]
- Blázquez-García, A.; Conde, A.; Mori, U.; Lozano, J.A. A review on outlier/anomaly detection in time series data. ACM Comput. Surv. (CSUR) 2021, 54, 1–33. [Google Scholar] [CrossRef]
- Ciaburro, G.; Iannace, G. Machine learning-based algorithms to knowledge extraction from time series data: A review. Data 2021, 6, 55. [Google Scholar] [CrossRef]
- Zheng, S.; Gu, C.; Shao, C.; Hu, Y.; Xu, Y.; Huang, X. A novel prediction model for seawall deformation based on CPSO-WNN-LSTM. Mathematics 2023, 11, 3752. [Google Scholar] [CrossRef]
- Ying, H.W.; Huang, Z.J.; Ge, H.B.; Shen, H.W.; Wang, K.L.; Gong, X.N. Curve-fitting method for settlement based on staged loading condition and its engineering application. J. Southeast Univ. (Nat. Sci. Ed.) 2021, 51, 300–305. [Google Scholar]
- Spross, J.; Larsson, S. Probabilistic observational method for design of surcharges on vertical drains. Géotechnique 2021, 71, 226–238. [Google Scholar] [CrossRef]
- Fan, H.; Chen, Z.; Shen, J.; Cheng, J.; Chen, D.; Jiao, P. Buckling of steel tanks under measured settlement based on Poisson curve prediction model. Thin-Walled Struct. 2016, 106, 284–293. [Google Scholar] [CrossRef]
- Sitharam, T.G.; Kolathayar, S. Geotechnical considerations for coastal reservoirs. Sustain. Water Resour. Dev. Using Coast. Reserv. 2020, 61–83. [Google Scholar] [CrossRef]
- Zhu, M.; Li, S.; Wei, X.; Wang, P. Prediction and stability assessment of soft foundation settlement of the fishbone-shaped dike near the estuary of the Yangtze River using machine learning methods. Sustainability 2021, 13, 3744. [Google Scholar] [CrossRef]
- Pinsky, M.A. Introduction to Fourier Analysis and Wavelets; American Mathematical Society: Providence, RI, USA, 2023; Volume 102. [Google Scholar]
- Khodadadi, N.; Abualigah, L.; Al-Tashi, Q.; Mirjalili, S. Multi-objective chaos game optimization. Neural Comput. Appl. 2023, 35, 14973–15004. [Google Scholar] [CrossRef]
- Taye, M.M. Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions. Computation 2023, 11, 52. [Google Scholar] [CrossRef]
- Chen, H.; Huang, S.; Xu, Y.P.; Teegavarapu, R.S.V.; Guo, Y.; Nie, H.; Xie, H. Using baseflow ensembles for hydrologic hysteresis characterization in humid basins of Southeastern China. Water Resour. Res. 2024, 60, e2023WR036195. [Google Scholar] [CrossRef]
- Liao, K.W.; Hsiung, H.J. Reliability-based safety analysis of a seawall with incomplete information on tsunamis. Coast. Eng. J. 2017, 59, 1750014. [Google Scholar] [CrossRef]
- Huang, J.X.; Qu, K.; Li, X.H.; Lan, G.Y. Performance evaluation of seawalls in mitigating a real-world tsunami wave using a nonhydrostatic numerical wave model. J. Mar. Sci. Eng. 2022, 10, 796. [Google Scholar] [CrossRef]
- Nunn, P.D.; Klöck, C.; Duvat, V. Seawalls as maladaptations along island coasts. Ocean Coast. Manag. 2021, 205, 105554. [Google Scholar] [CrossRef]
- Trimble, S.; Houser, C. Seawalls and signage: How beach access management affects rip current safety. Beach Manag. Tools-Concepts Methodol. Case Stud. 2018, 24, 497–524. [Google Scholar]
- Amini, E.; Marsooli, R.; Ayyub, B.M. Assessing Beach–Seawall Hybrid Systems: A Novel Metric-Based Approach for Robustness and Serviceability. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2024, 10, 04023062. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Li, C.Z.; Hu, Z.; Shen, G.Q.; Huang, Z. Foundation pit displacement monitoring and prediction using least squares support vector machines based on multi-point measurement. Struct. Health Monit. 2019, 18, 715–724. [Google Scholar] [CrossRef]
- Cao, W.; Wen, Z.; Feng, Y.; Zhang, S.; Su, H. A Multi-Point Joint Prediction Model for High-Arch Dam Deformation Considering Spatial and Temporal Correlation. Water 2024, 16, 1388. [Google Scholar] [CrossRef]
- Deng, J. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Liu, S.; Forrest, J.Y.L. Grey systems: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Javanmardi, E.; Liu, S. Exploring grey systems theory-based methods and applications in analyzing socio-economic systems. Sustainability 2019, 11, 4192. [Google Scholar] [CrossRef]
- Shan, X.; Cao, Y. Forecasting guangdong’s marine science and technology, marine economy, and employed persons by coastal regions—Based on rolling grey MGM (1, m) model. Water 2022, 14, 824. [Google Scholar] [CrossRef]
- Tao, L.; Liang, A.; Xie, N.; Liu, S. Grey system theory in engineering: A bibliometrics and visualization analysis. Grey Syst. Theory Appl. 2022, 12, 723–743. [Google Scholar] [CrossRef]
- Hu, M.; Liu, W. Grey system theory in sustainable development research—A literature review (2011–2021). Grey Syst. Theory Appl. 2022, 12, 785–803. [Google Scholar] [CrossRef]
- Wu, L.F.; Liu, S.F.; Cui, W.; Liu, D.L.; Yao, T.X. Non-homogenous discrete grey model with fractional-order accumulation. Neural Comput. Appl. 2014, 25, 1215–1221. [Google Scholar] [CrossRef]
- Wu, L.; Liu, S.; Fang, Z.; Xu, H. Properties of the GM (1, 1) with fractional order accumulation. Appl. Math. Comput. 2015, 252, 287–293. [Google Scholar] [CrossRef]
- Liu, J.; Liu, S.; Fang, Z. Fractional-order reverse accumulation generation gm (1, 1) model and its applications. J. Grey Syst. 2015, 27, 52. [Google Scholar]
- Zeng, B.; Liu, S. A self-adaptive intelligence gray prediction model with the optimal fractional order accumulating operator and its application. Math. Methods Appl. Sci. 2017, 40, 7843–7857. [Google Scholar] [CrossRef]
- Xia, L.; Ren, Y.; Wang, Y. Forecasting China’s total renewable energy capacity using a novel dynamic fractional order discrete grey model. Expert Syst. Appl. 2024, 239, 122019. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, H.; Yuan, X.; Chen, L.; Lei, X. Application of fractional order-based grey power model in water consumption prediction. Environ. Earth Sci. 2019, 78, 266. [Google Scholar] [CrossRef]
- Qin, P.; Cheng, C. Prediction of seawall settlement based on a combined LS-ARIMA model. Math. Probl. Eng. 2017, 2017, 7840569. [Google Scholar] [CrossRef]
- Meng, W.; Zeng, B.; Li, S. A novel fractional-order grey prediction model and its modeling error analysis. Information 2019, 10, 167. [Google Scholar] [CrossRef]
- Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021, 80, 8091–8126. [Google Scholar] [CrossRef]
- Qin, P.; Su, H.Z.; Shen, Y.J. Prediction of Seawall Settlement Based on ARIMA-RTA model. Hydro-Sci. Eng. 2013, 11, 66–70. [Google Scholar]
- Zhang, J.; Qin, Y.; Zhang, X.; Che, G.; Sun, X.; Duo, H. Application of non-equidistant GM (1, 1) model based on the fractional-order accumulation in building settlement monitoring. J. Intell. Fuzzy Syst. 2022, 42, 1559–1573. [Google Scholar] [CrossRef]
- Yang, H.; Gao, M.; Xiao, Q. A novel fractional-order accumulation grey power model and its application. Soft Comput. 2023, 27, 1347–1365. [Google Scholar] [CrossRef]
- Mirjalili, S. Evolutionary Algorithms and Neural Networks: Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2018; Volume 780. [Google Scholar]
- Hamdia, K.M.; Zhuang, X.; Rabczuk, T. An efficient optimization approach for designing machine learning models based on genetic algorithm. Neural Comput. Appl. 2021, 33, 1923–1933. [Google Scholar] [CrossRef]
- Sohail, A. Genetic algorithms in the fields of artificial intelligence and data sciences. Ann. Data Sci. 2023, 10, 1007–1018. [Google Scholar] [CrossRef]
- Avazzadeh, Z.; Nikan, O.; Nguyen, A.T. A localized hybrid kernel meshless technique for solving the fractional Rayleigh–Stokes problem for an edge in a viscoelastic fluid. Eng. Anal. Bound. Elem. 2023, 146, 695–705. [Google Scholar] [CrossRef]
Time | Monitored Data | Predicted Data | Residual | Relative Residual |
---|---|---|---|---|
3 | 8.6 | 8.6 | 0 | 0 |
6 | 52.1 | 65.3 | −13.24 | −0.254 |
9 | 99.6 | 89.7 | 9.87 | 0.099 |
12 | 110.5 | 99.7 | 10.84 | 0.098 |
15 | 119.1 | 107.9 | 11.16 | 0.094 |
18 | 120.6 | 115.4 | 5.20 | 0.043 |
21 | 129.5 | 126.4 | 3.09 | 0.024 |
24 | 132.5 | 129.1 | 3.36 | 0.025 |
27 | 134.0 | 135.7 | −1.73 | −0.013 |
30 | 139.1 | 142.2 | −3.13 | −0.023 |
33 | 147.4 | 148.7 | −1.32 | −0.009 |
36 | 146.1 | 150.2 | −4.12 | −0.028 |
39 | 148.5 | 151.8 | −3.26 | −0.022 |
42 | 161.6 | 163.4 | −1.78 | −0.011 |
45 | 171.6 | 165.1 | 6.52 | 0.038 |
48 | 176.9 | 166.2 | 10.67 | 0.060 |
51 | 185.7 | 187.8 | −2.12 | −0.011 |
54 | 194.3 | 197.9 | −3.59 | −0.018 |
57 | 205.1 | 203.1 | 1.99 | 0.010 |
60 | 208.1 | 210.5 | −2.38 | −0.011 |
Monitoring Points | Fitting Data | Testing Data | ||||||
---|---|---|---|---|---|---|---|---|
R2 | MRE | MSE | RMSE | R2 | MRE | MSE | RMSE | |
SS5 | 0.974 | 5.577 | 46.452 | 6.585 | 0.820 | 0.779 | 2.791 | 4.999 |
SS6 | 0.971 | 5.671 | 22.731 | 4.606 | 0.853 | 1.140 | 2.603 | 3.261 |
SS7 | 0.977 | 0.091 | 12.755 | 3.570 | 0.853 | 0.759 | 0.501 | 0.952 |
SS8 | 0.878 | 13.432 | 5.292 | 2.222 | 0.818 | 1.730 | 0.309 | 0.606 |
Models | The Proposed Model | The fractional-Order GM(1,1) | Integer-Order GM(1,1)) | Fractal Theory |
---|---|---|---|---|
Variable number of parameters | 6 (including fractional-order r, population size M, crossover probability Pc, mutation probability Pm, typical number of iterations, predicted length m) | 1 (fractional-order r) | 0 | 1 (including fractal dimension D) |
Calculating time | 12 s | 3 s | 1 s | 5 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, P.; Cheng, C.; Meng, Z.; Ding, C.; Zheng, S.; Su, H. Multi-Point Seawall Settlement Prediction with Limited Data Volume Using an Improved Fractional-Order Grey Model. Fractal Fract. 2024, 8, 423. https://doi.org/10.3390/fractalfract8070423
Qin P, Cheng C, Meng Z, Ding C, Zheng S, Su H. Multi-Point Seawall Settlement Prediction with Limited Data Volume Using an Improved Fractional-Order Grey Model. Fractal and Fractional. 2024; 8(7):423. https://doi.org/10.3390/fractalfract8070423
Chicago/Turabian StyleQin, Peng, Chunmei Cheng, Zhenzhu Meng, Chunmei Ding, Sen Zheng, and Huaizhi Su. 2024. "Multi-Point Seawall Settlement Prediction with Limited Data Volume Using an Improved Fractional-Order Grey Model" Fractal and Fractional 8, no. 7: 423. https://doi.org/10.3390/fractalfract8070423
APA StyleQin, P., Cheng, C., Meng, Z., Ding, C., Zheng, S., & Su, H. (2024). Multi-Point Seawall Settlement Prediction with Limited Data Volume Using an Improved Fractional-Order Grey Model. Fractal and Fractional, 8(7), 423. https://doi.org/10.3390/fractalfract8070423