Effect of Sheep’s Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics
<p>Dry matter (<b>A</b>) and water activity (<b>B</b>) of cheese samples over storage (<span class="html-italic">n</span> = 3). (CON) = control cheese without coating; (NAT) = cheese without coating treated with natamycin; (WCO) = cheese with SCWP coating without additives; (WFQ) = cheese with SCWP coating with bioprotective culture; (WKO) = cheese with SCWP coating with kombucha; (WEO) = cheese with SCWP coating with oregano essential oil. The same notation is used in all figures and <a href="#foods-13-04132-t001" class="html-table">Table 1</a> and <a href="#foods-13-04132-t002" class="html-table">Table 2</a>.</p> "> Figure 2
<p>Fat in dry matter (<b>A</b>) and water in defatted cheese (<b>B</b>) of cheese samples over storage (<span class="html-italic">n</span> = 3).</p> "> Figure 3
<p>pH (<b>A</b>) and titratable acidity (<b>B</b>) of cheese samples over storage (<span class="html-italic">n</span> = 3).</p> "> Figure 4
<p>Texture parameters of cheese samples over storage (<span class="html-italic">n</span> = 3). (<b>A</b>) Hardness; (<b>B</b>) adhesiveness; (<b>C</b>) chewiness; (<b>D</b>) cohesiveness.</p> "> Figure 5
<p>Color parameters of cheese samples over storage (<span class="html-italic">n</span> = 3). (<b>A</b>) L*—rind; (<b>B</b>) L*—paste; (<b>C</b>) a*—rind; (<b>D</b>) a*—paste; (<b>E</b>) b*—rind; (<b>F</b>) b*—paste.</p> "> Figure 6
<p>Microbial counts of cheese samples over storage (<span class="html-italic">n</span> = 3). (<b>A</b>) Lactobacilli; (<b>B</b>) lactococci; (<b>C</b>) yeasts and molds.</p> "> Figure 7
<p>External aspect of cheese samples over storage and aspect of the cheeses’ paste on the 28th day of storage.</p> "> Figure 8
<p>Sensory scores of cheese samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Sheep Cheese Whey Powders
2.2. Manufacture the Coatings with Sheep Second Cheese Whey Powders
2.3. Manufacture of Model Cheeses
2.4. Physicochemical Analysis
2.5. Microbiological Analysis
2.6. Chemicals
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kure, C.F.; Skaar, I. The fungal problem in the cheese industry. Curr. Opin. Food Sci. 2019, 29, 14–19. [Google Scholar] [CrossRef]
- Rodríguez, A.; Magan, N.; Delgado, J. Exploring a cheese ripening process that hinders ochratoxin A production by Penicillium nordicum and Penicillium verrucosum. Biology 2024, 13, 582. [Google Scholar] [CrossRef]
- Dobson, A.D.W. Mycotoxins in Cheese. In Cheese: Chemistry, Physics and Microbiology, 4th ed.; McSweeney, P., Cotter, P., Everett, D., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 595–601. [Google Scholar] [CrossRef]
- Hymery, N.; Vasseur, V.; Coton, M.; Mounier, J.; Jany, J.-L.; Barbier, G.; Coton, E. Filamentous fungi and mycotoxins in Cheese: A review. Comp. Rev. Food Sci. Food Saf. 2014, 13, 437–456. [Google Scholar] [CrossRef]
- Onmaz, N.E.; Çinicioğlu, S.; Gungor, C. Molds and aflatoxins in traditional moldy civil cheese: Presence and public health concerns. J. Hell. Vet. Med. Soc. 2021, 72, 3223–3228. [Google Scholar] [CrossRef]
- De Souza e Silva Ribeiro, E.; do Nascimento, A.F.; Silva, L.D.; de Azevedo Lira, N.; Passamani, F.R.F.; Batista, L.R.; Matteoli, F.P. Occurrence of filamentous fungi isolated from matured blue cheese. Braz. J. Food Technol. 2020, 23, e2019074. [Google Scholar] [CrossRef]
- Moatsou, G.; Moschopoulou, E.; Beka, A.; Tsermoula, P.; Pratsis, D. Effect of natamycin-containing coating on the evolution of biochemical and microbiological parameters during the ripening and storage of ovine hard-Gruyère-type cheese. Int. Dairy J. 2015, 50, 1–8. [Google Scholar] [CrossRef]
- Fajardo, P.; Martins, J.T.; Fuciños, C.; Pastrana, L.; Teixeira, J.A.; Vicente, A.A. Evaluation of a chitosan-based edible film as carrier of natamycin to improve the storability of Saloio cheese. J. Food Eng. 2010, 101, 349–356. [Google Scholar] [CrossRef]
- Azhdari, S.; Moradi, M. Application of antimicrobial coating based on carboxymethyl cellulose and natamycin in active packaging of cheese. Int. J. Biol. Macromol. 2022, 209, 2042–2049. [Google Scholar] [CrossRef] [PubMed]
- Hanušová, K.; Dobiáš, J.; Voldřich, M. Assessment of functional properties and antimicrobial efficiency of polymer films with lacquer layer containing natamycin in cheese packaging. J. Food Nutr. Res. 2012, 51, 145–155. [Google Scholar]
- Yildirim, M.; Güleç, F.; Bayram, M.; Yildirim, Z. Properties of Kashar cheese coated with casein as a carrier of natamycin. Ital. J. Food Sci. 2006, 18, 127–138. [Google Scholar]
- Berti, S.; Ollé Resa, C.P.; Basanta, F.; Gerschenson, L.N.; Jagus, R.J. Edible coatings on Gouda cheese as a barrier against external contamination during ripening. Food Biosci. 2019, 31, 100447. [Google Scholar] [CrossRef]
- Fernandes, L.M.; Guimarães, J.T.; Pimentel, T.C.; Esmerino, E.A.; Freitas, M.Q.; Carvalho, C.W.P.; Cruz, A.G.; Silva, M.C. Edible whey protein films and coatings added with prebiotic ingredients. In Agri-Food Industry Strategies for Healthy Diets and Sustainability: New Challenges in Nutrition and Public Health; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar] [CrossRef]
- Kandasamy, S.; Yoo, J.; Yun, J.; Kang, H.-B.; Seol, K.-H.; Kim, H.-W.; Ham, J.-S. Application of whey protein-based edible films and coatings in food industries: An updated overview. Coatings 2021, 11, 1056. [Google Scholar] [CrossRef]
- Schmid, M.; Dallmann, K.; Bugnicourt, E.; Cordoni, D.; Wild, F.; Lazzeri, A.; Noller, K. Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int. J. Polym. Sci. 2012, 2012, 562381. [Google Scholar] [CrossRef]
- Vasiliauskaite, A.; Mileriene, J.; Songisepp, E.; Rud, I.; Muizniece-Brasava, S.; Ciprovica, I.; Axelsson, L.; Lutter, L.; Aleksandrovas, E.; Tammsaar, E.; et al. Application of edible coating based on liquid acid whey protein concentrate with indigenous Lactobacillus helveticus for acid-curd cheese quality improvement. Foods 2022, 11, 3353. [Google Scholar] [CrossRef] [PubMed]
- Ramos, Ó.L.; Santos, A.C.; Leão, M.V.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Pintado, M.E.; Malcata, F.X. Antimicrobial activity of edible coatings prepared from whey protein isolate and formulated with various antimicrobial agents. Int. Dairy J. 2012, 25, 132–141. [Google Scholar] [CrossRef]
- Ramos, O.T.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Lopes-da-Silva, J.A.; Pintado, M.E.; Malcata, F.X. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. J. Dairy Sci. 2012, 95, 6282–6292. [Google Scholar] [CrossRef]
- Jalilzadeh, A.; Hesari, J.; Peighambardoust, S.H.; Jodeiri, H.; Javidipour, I. The effect of whey protein concentrate based edible coatings containing natamycin or lysozyme-xanthan conjugate on microbial properties of ultrafiltrated white cheese. J. Food Sci. Technol. 2019, 16, 305–315. [Google Scholar]
- Siriwardana, J.; Wijesekara, I. Analysis of the effectiveness of an antimicrobial edible coating prepared from sweet whey base to improve the physicochemical, microbiological, and sensory attributes of swiss cheese. Adv. Agric. 2021, 2021, e5096574. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, H.; Tian, B.; Jiang, B.; Xu, J.; Li, D.; Feng, Z.; Liu, C. Novel edible coating with antioxidant and antimicrobial activities based on whey protein isolate nanofibrils and carvacrol and its application on fresh-cut cheese. Coatings 2019, 9, 583. [Google Scholar] [CrossRef]
- Pires, A.F.; Díaz, O.; Cobos, A.; Pereira, C.D. A review of recent developments in edible films and coatings-focus on whey-based materials. Foods 2024, 13, 2638. [Google Scholar] [CrossRef]
- Tamošaitis, A.; JaruševičienĖ, A.; Strykaite, M.; Damašius, J. Analysis of antimicrobial whey protein-based biocomposites with lactic acid, tea tree (Melaleuca alternifolia) and garlic (Allium sativum) essential oils for Edam cheese coating. Int. J. Dairy Technol. 2022, 75, 611–618. [Google Scholar] [CrossRef]
- Bintsis, T.; Papademas, P. The Application of Protective Cultures in Cheese: A Review. Fermentation 2024, 10, 117. [Google Scholar] [CrossRef]
- Zhao, Z.; Simpson, D.J.; Gänzle, M.G. Bioprotective lactobacilli in Crescenza and Gouda cheese models to inhibit fungal spoilage. Int. Dairy J. 2024, 152, 105883. [Google Scholar] [CrossRef]
- Meloni, M.P.; Piras, F.; Siddi, G.; Migoni, M.; Cabras, D.; Cuccu, M.; Nieddu, G.; McAuliffe, O.; De Santis, E.P.L.; Scarano, C. Effect of Commercial and Autochthonous Bioprotective Cultures for Controlling Listeria monocytogenes Contamination of Pecorino Sardo Dolce PDO Cheese. Foods 2023, 12, 3797. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.P.M.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C.G. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT 2022, 153, 112486. [Google Scholar] [CrossRef]
- Makki, G.M.; Kozak, S.M.; Jencarelli, K.G.; Alcaine, S.D. Evaluation of the efficacy of commercial protective cultures to inhibit mold and yeast in cottage cheese. J. Dairy Sci. 2021, 104, 2709–2718. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.N.; Cadavez, V.; Teixeira, J.A.; Gonzales-Barron, U. Meta-Regression models describing the effects of essential oils and added lactic acid bacteria on pathogen inactivation in cheese. Microb. Risk Anal. 2021, 18, 100131. [Google Scholar] [CrossRef]
- Bagheripoor, N.; Khoshgozaran-Abras, S.; Sohrabvandi, S.; Khorshidian, N.; Mortazavian, A.M.; MollaKhalili, N.; Jazaeri, S. Application of active edible coatings to improve the shelf-life of cheese. Food Sci. Technol. Res. 2018, 24, 949–962. [Google Scholar] [CrossRef]
- Paidari, S.; Ahari, H.; Pasqualone, A.; Anvar, A.A.; Allah Yari Beyk, S.; Moradi, S. Bio-nanocomposites and their potential applications in physiochemical properties of cheese: An updated review. J. Food Meas. Charact. 2023, 17, 2595–2606. [Google Scholar] [CrossRef]
- Diez-Ozaeta, I.; Astiazaran, O.J. Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Int. J. Food Microbiol. 2022, 377, 109783. [Google Scholar] [CrossRef]
- DuMez-Kornegay, R.N.; Baker, L.S.; Morris, A.J.; DeLoach, W.L.M.; Dowen, R.H. Kombucha Tea-associated microbes remodel host metabolic pathways to suppress lipid accumulation. PLoS Genet. 2024, 20, e1011003. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Soto, S.A.; Bouajila, J.; Pace, M.; Leech, J.; Cotter, P.D.; Souchard, J.P.; Taillandier, P.; Beaufort, S. Metabolome-microbiome signatures in the fermented beverage, Kombucha. Int. J. Food Microb. 2020, 333, 108778. [Google Scholar] [CrossRef] [PubMed]
- Anantachoke, N.; Duangrat, R.; Sutthiphatkul, T.; Ochaikul, D.; Mangmool, S. Kombucha Beverages Produced from Fruits, Vegetables, and Plants: A Review on Their Pharmacological Activities and Health Benefits. Foods 2023, 12, 1818. [Google Scholar] [CrossRef]
- Hsieh, Y.; Chiu, M.C.; Chou, J.Y. Efficacy of the Kombucha Beverage Derived from Green, Black, and Pu’er Teas on Chemical Profile and Antioxidant Activity. J. Food Qual. 2021, 2021, e1735959. [Google Scholar] [CrossRef]
- Kushargina, R.; Rimbawan, R.; Dewi, M.; Damayanthi, E. Metagenomic analysis, safety aspects, and antioxidant potential of kombucha beverage produced from telang flower (Clitoria ternatea L.) tea. Food Biosci. 2024, 59, 104013. [Google Scholar] [CrossRef]
- Leal, J.M.; Suárez, L.V.; Jayabalan, R.; Oros, J.H.; Escalante-Aburto, A. A review on health benefits of kombucha nutritional compounds and metabolites. CYTA J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef]
- Tu, C.; Yu, T.; Feng, S.; Xu, N.; Massawe, A.; Shui, S.; Zhang, B. Dynamics of microbial communities, flavor, and physicochemical properties of kombucha-fermented Sargassum fusiforme beverage during fermentation. LWT Food Sci. 2024, 192, 115729. [Google Scholar] [CrossRef]
- Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Mejía, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; et al. Kombucha beverage from green, black and rooibos teas: A comparative study looking at microbiology, chemistry and antioxidant activity. Nutrients 2019, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Rutherfurd-Markwick, K.; Liu, N.; Zhang, X.X.; Mutukumira, A.N. Evaluation of the probiotic potential of yeast isolated from kombucha in New Zealand. Curr. Res. Food Sci. 2024, 8, 100711. [Google Scholar] [CrossRef]
- Leonarski, E.; Cesca, K.; Borges, O.M.A.; de Oliveira, D.; Poletto, P. Typical kombucha fermentation: Kinetic evaluation of beverage and morphological characterization of bacterial cellulose. J. Food Process. Preserv. 2021, 45, 16100. [Google Scholar] [CrossRef]
- Yakaew, P.; Phetchara, T.; Kampeerapappun, P.; Srikulkit, K. Chitosan-Coated Bacterial Cellulose (BC)/Hydrolyzed Collagen Films and Their Ascorbic Acid Loading/Releasing Performance: A Utilization of BC Waste from Kombucha Tea Fermentation. Polymers 2022, 14, 4544. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, A.; Jokar, M.; Mohammadi Nafchi, A. Preparation and characterization of biocomposite film based on chitosan and kombucha tea as active food packaging. Int. J. Biol. Macromol. 2018, 108, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Vukić, V.; Iličić, M.; Vukić, D.; Kocić-Tanackov, S.; Pavlić, B.; Bjekić, M.; Kanurić, K.; Degenek, J.; Zeković, Z. The application of kombucha inoculum as an innovative starter culture in fresh cheese production. LWT Food Sci. 2021, 151, 112142. [Google Scholar] [CrossRef]
- Vukić, V.; Iličić, M.; Kanurić, K.; Vukić, D.; Bjekić, M.; Degenek, J. New fresh cheese made with kombucha inoculum as a non-conventional starter culture. J. Hyg. Eng. Des. 2022, 38, 230–233. [Google Scholar]
- Degenek, J.; Kanurić, K.; Iličić, M.; Vukić, D.; Mrkonjić, Ž.; Pavlić, B.; Zeković, Z.; Vukić, V. Fortification of fresh kombucha cheese with wild thyme (Thymus serpyllum L.) herbal dust and its influence on antioxidant activity. Food Biosci. 2023, 56, 103161. [Google Scholar] [CrossRef]
- Bjekić, M.; Iličić, M.; Vukić, V.; Vukić, D.; Kanurić, K.; Pavlić, B.; Zeković, Z.; Popović, L.; Torbica, A.; Tomić, J.; et al. Protein characterisation and antioxidant potential of fresh cheese obtained by kombucha inoculum. Mljekarstvo 2021, 71, 215–225. [Google Scholar] [CrossRef]
- Aung, T.; Kim, M.J. A comprehensive review on kombucha biofilms: A promising candidate for sustainable food product development. Trends Food Sci. Technol. 2024, 144, 104325. [Google Scholar] [CrossRef]
- Leyva-López, N.; Gutiérrez-Grijalva, E.P.; Vazquez-Olivo, G.; Heredia, J.B. Essential oils of oregano: Biological activity beyond their antimicrobial properties. Molecules 2017, 22, 989. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro-Santos, R.; Ventura, L.A.F.; Santos, D.C.; Melo, N.R.; Costa, B.S. Effects of oregano, cinnamon, and sweet fennel essential oils and their blends on foodborne microorganisms. Int. Food Res. J. 2018, 25, 540–544. [Google Scholar]
- Puškárová, A.; Bučková, M.; Kraková, L.; Pangallo, D.; Kozics, K. The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci. Rep. 2017, 7, 8211. [Google Scholar] [CrossRef] [PubMed]
- Araújo, L.S.; Araújo, R.S.; Serra, J.L.; Nascimento, A.R. Chemical composition and susceptibility of oregano essential oil (Origanum vulgare L., Lamiaceae) on strains of Escherichia coli, Staphylococcus aureus and Salmonella choleraesuis. Bol. Cent. Pesq. Proc. Alimentos 2015, 33, 73–78. [Google Scholar] [CrossRef]
- Li, B.; Zheng, K.; Lu, J.; Zeng, D.; Xiang, Q.; Ma, Y. Antibacterial characteristics of oregano essential oil and its mechanisms against Escherichia coli O157:H7. J. Food Meas. Charact. 2022, 16, 2989–2998. [Google Scholar] [CrossRef]
- Böhme, K.; Barros-Velázquez, J.; Calo-Mata, P.; Aubourg, S.P. Antibacterial, antiviral and antifungal activity of essential oils: Mechanisms and applications. In Antimicrobial Compounds: Current Strategies and New Alternatives; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Portillo-Ruiz, M.C.; Sánchez, R.A.-S.; Ramos, S.V.; Muñoz, J.V.T.; Nevárez-Moorillón, G.V. Antifungal effect of Mexican oregano (Lippia berlandieri Schauer) essential oil on a wheat flour-based medium. J. Food Sci. 2012, 77, M441–M445. [Google Scholar] [CrossRef] [PubMed]
- Chami, F.; Chami, N.; Bennis, S.; Bouchikhi, T.; Remmal, A. Oregano and clove essential oils induce surface alteration of Saccharomyces cerevisiae. Phytother. Res. 2005, 19, 405–408. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, P.; Blanco-Pascual, N.; Rosolen, D.; Cisilotto, J.; Creczynski-Pasa, T.; Laurindo, J. Antioxidant and antifungal properties of essential oils of oregano (Origanum vulgare) and mint (Mentha arvensis) against Aspergillus flavus and Penicillium commune for use in food preservation. Food Sci. Technol. 2022, 42, e64921. [Google Scholar] [CrossRef]
- Pires, A.; Pietruszka, H.; Bożek, A.; Szkolnicka, K.; Gomes, D.; Díaz, O.; Cobos, A.; Pereira, C. Sheep’s Second Cheese Whey Edible Coatings with Oregano and Clary Sage Essential Oils Used as Sustainable Packaging Material in Cheese. Foods 2024, 13, 674. [Google Scholar] [CrossRef]
- NP 3544; Queijos e queijos fundidos. Determinação do resíduo seco e do resíduo seco isento de matéria gorda. Direção Geral da Qualidade: Lisbon, Portugal, 1987. (In Portuguese)
- NP 2105; Queijos. Determinação do Teor de Matéria Gorda. Técnica de Van Gulick. Processo Corrente. Direção Geral da Qualidade: Lisbon, Portugal, 1983. (In Portuguese)
- NP 1598; Queijos. Definição, classificação, acondicionamento e marcação. Direção Geral da Qualidade: Lisbon, Portugal, 1983. (In Portuguese)
- AOAC 920.124; Acidity for Cheese. Titrimetric Method. In Official Methods of Analysis of Association of Official Analytical Chemists, 17th ed. AOAC: Rockville, MD, USA, 2002.
- A Simple Review of CIEΔE* (Colour Difference) Equations. Available online: https://techkonusa.com/a-simple-review-of-cie-δe-color-difference-equations/ (accessed on 24 October 2024).
- ISO 7889:2003|IDF 117:2003; Yogurt. Enumeration of Characteristic Microorganisms. Colony-Count Technique at 37 °C. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 6611:2004|IDF 94:2004; Milk and Milk Products -Enumeration of Colony-Forming Units of Yeasts and/or Moulds. Colony-Count Technique at 25 °C. International Organization for Standardization: Geneva, Switzerland, 2004.
- Henriques, M.; Santos, G.; Rodrigues, A.; Gomes, D.; Pereira, C.D.; Gil, M. Replacement of conventional cheese coatings by natural whey protein edible coatings with antimicrobial activity. J. Hyg. Eng. Des. 2013, 3, 34–47. Available online: http://www.jhed.mk/categories/view/446/456 (accessed on 20 October 2024).
- Ebrahimzadeh, S.; Bari, M.R.; Hamishehkar, H.; Kafil, H.S.; Lim, L.T. Essential oils-loaded electrospun chitosan-poly (vinyl alcohol) nonwovens laminated on chitosan film as bilayer bioactive edible films. LWT Food Sci. Technol. 2021, 144, 111217. [Google Scholar] [CrossRef]
- Jutinico-Shubach, A.; Gutiérrez-Cortés, C.; Suarez, H. Antilisterial activity of chitosan-based edible coating incorporating cell-free supernatant from Pediococcus pentosaceus 147 on the preservation of fresh cheese. J. Food Process. Preserv. 2020, 44, e14715. [Google Scholar] [CrossRef]
- Alipour, A.; Rahaiee, S.; Litkohi, H.R.; Jamali, S.N.; Seid Mahdi Jafari, S.M. Development and optimization of whey protein- Lepidium perfoliatum gum packaging films: An approach towards antimicrobial and biodegradable films. Ind. Crops Prod. 2023, 196, 116447. [Google Scholar] [CrossRef]
- Fernández-Pan, I.; Royo, M.; Ignacio Maté, J. Antimicrobial activity of whey protein isolate edible films with essential oils against food spoilers and foodborne pathogens. J. Food Sci. 2012, 77, M383–M390. [Google Scholar] [CrossRef] [PubMed]
- Valdés, A.; Ramos, M.; Beltrán, A.; Jiménez, A.; Garrigós, M.C. State of the art of antimicrobial edible coatings for food packaging applications. Coatings 2017, 7, 56. [Google Scholar] [CrossRef]
- Silva, C.C.; Silva, S.P.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef] [PubMed]
RIND | 1st vs. 7th | 7th vs. 14th | 14th vs. 21st | 21st vs. 28th |
---|---|---|---|---|
CON | 21.3 | 3.3 | 7.0 | 3.9 |
NAT | 17.6 | 2.0 | 7.4 | 8.5 |
WCO | 20.3 | 3.1 | 8.4 | 2.9 |
WFQ | 19.5 | 7.2 | 5.7 | 12.7 |
WKO | 19.7 | 3.3 | 4.6 | 3.4 |
WEO | 16.5 | 4.4 | 20.5 | 4.6 |
PASTE | ||||
CON | 1.6 | 5.8 | 6.9 | 2.0 |
NAT | 0.5 | 5.8 | 3.3 | 1.5 |
WCO | 1.3 | 24.6 | 17.1 | 10.1 |
WFQ | 1.4 | 7.0 | 11.2 | 6.1 |
WKO | 1.2 | 5.1 | 9.6 | 3.0 |
WEO | 1.1 | 5.0 | 2.7 | 4.2 |
RIND | NAT | WCO | WFQ | WKO | WEO |
---|---|---|---|---|---|
CON | 2.5 | 4.4 | 3.5 | 7.0 | 14.6 |
NAT | 3.1 | 0.6 | 1.5 | 1.7 | |
WCO | 1.0 | 1.5 | 4.2 | ||
WFQ | 17.8 | 5.6 | |||
WKO | 12.6 | ||||
PASTE | |||||
CON | 1.2 | 8.5 | 0.8 | 2.2 | 9.4 |
NAT | 9.7 | 0.8 | 3.1 | 10.6 | |
WCO | 8.9 | 6.7 | 1.1 | ||
WFQ | 2.3 | 6.6 | |||
WKO | 0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, C.D.; Varytskaya, H.; Łydzińska, O.; Szkolnicka, K.; Gomes, D.; Pires, A. Effect of Sheep’s Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics. Foods 2024, 13, 4132. https://doi.org/10.3390/foods13244132
Pereira CD, Varytskaya H, Łydzińska O, Szkolnicka K, Gomes D, Pires A. Effect of Sheep’s Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics. Foods. 2024; 13(24):4132. https://doi.org/10.3390/foods13244132
Chicago/Turabian StylePereira, Carlos D., Hanna Varytskaya, Oliwia Łydzińska, Katarzyna Szkolnicka, David Gomes, and Arona Pires. 2024. "Effect of Sheep’s Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics" Foods 13, no. 24: 4132. https://doi.org/10.3390/foods13244132
APA StylePereira, C. D., Varytskaya, H., Łydzińska, O., Szkolnicka, K., Gomes, D., & Pires, A. (2024). Effect of Sheep’s Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics. Foods, 13(24), 4132. https://doi.org/10.3390/foods13244132