Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity
<p>The influence of substrate and matrix on bacterial community structure of kombucha (family level), after 14 days of fermentation, as determined by 16S rRNA gene amplicon sequencing, showing in (<b>a</b>) the relative abundance from 0 to 100% and (<b>b</b>) the focus in the range between 98% and 100%.</p> "> Figure 2
<p>The influence of matrix (plot) and substrate (only table) on kombucha bacterial community structure after 14 days of fermentation illustrated as a PCoA plot. Bray–Curtis dissimilarity index determined by 16S rRNA gene amplicon sequencing (pairwise ANOSIM, 999 permutations).</p> "> Figure 3
<p>The influence of substrate and matrix on bacterial community structure of kombucha (family level) after 7 (<b>a</b>) and 14 (<b>b</b>) days of fermentation, as determined by internal transcribed spacer two (ITS2) gene amplicon sequencing.</p> "> Figure 4
<p>The influence of substrate (plot, table), matrix (only table) and fermentation time (only on kombucha fungal community structure after 14 days of fermentation illustrated as a PCoA plot of Bray-Curtis dissimilarity index determined by ITS2 gene amplicon sequencing (pairwise ANOSIM, 999 permutations).</p> "> Figure 5
<p>Effects of rooibos kombuchas on L929 cell proliferation; data, expressed as % of control, represent mean ±2 SEM of three independent experiments. Statistical analysis of differences was carried out by two-way ANOVA followed by Fisher’s LSD as post-hoc test. Different letters represent statistical significance (<span class="html-italic">p</span> ≤ 0.05).</p> "> Figure 6
<p>L929 cell proliferation after oxidative stress: (<b>a</b>) “Curative model” and (<b>b</b>) “Preventive model”. Data, expressed as % of control, represent mean ±2 SEM of three independent experiments. Statistical analysis of differences was carried out by two-way ANOVA followed by Fisher’s LSD as post-hoc test. Different letters represent statistical significance: (<span class="html-italic">p</span> ≤ 0.05).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Kombucha Fermentation: Batches Preparation
2.2. Culture-Based Microbiological Investigations
2.3. Grouping and Molecular Identification of AAB and Yeast Isolates
2.4. Dynamics of Bacteria and Yeast Population during Fermentation
2.4.1. DNA Extraction
2.4.2. Library Preparation and Sequencing
2.4.3. Bioinformatic Analysis
2.5. Chemical Analysis
2.5.1. Sugar and Acid Organics Analysis
2.5.2. Total Polyphenols and Flavonoids
2.5.3. Antioxidant Activity
2.5.4. Catechins Identification and Quantification by HPLC-MS/MS
2.6. Cell Cultures, Oxidative Cell Treatments and MTT Assay
2.7. Statistical Analysis
3. Results
3.1. Culture-Based Enumeration and AAB and Yeast Isolates Identification
3.2. High-Throughput Sequencing of 16S rRNA Gene and ITS Region Amplicons
3.3. Chemical Analysis
3.3.1. Sugars and Acid Organics
3.3.2. Polyphenols, Flavonoids and Antioxidant Activity
3.3.3. Catechins Identification and Quantification by HPLC-MS/MS
3.2.4. Effect of Rooibois Kombuchas on Fibroblasts Proliferation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jarrell, J.; Cal, T.; Bennett, J.W. The Kombucha consortia of yeasts and bacteria. Mycologist 2000, 14, 166–170. [Google Scholar] [CrossRef]
- Marsh, A.J.; O’Sullivan, O.; Hill, C.; Ross, R.P.; Cotter, P.D. Sequence-based analysis of the bacterial and fungal compositions of multiple Kombucha (tea fungus) samples. Food Microbiol. 2014, 8, 171–178. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, F.; Troise, A.D.; Vitaglione, P.; Ercolini, D. Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiol. 2018, 73, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Dufresne, C.; Farnworth, E. Tea, kombucha, and health: A review. Food Res. Intern. 2000, 33, 409–421. [Google Scholar] [CrossRef]
- Kapp, J.M.; Sumner, W. Kombucha: A systematic review of the empirical evidence of human health benefit. Ann. Epidemiol. 2018, in press. [Google Scholar] [CrossRef] [PubMed]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Malbaša, R.V.; Lončar, E.S.; Kolarov, L.J.A. Sucrose and inulin balance during tea fungus fermentation. Roum. Biotechnol. Lett. 2002, 7, 573–576. [Google Scholar]
- Malbaša, R.V.; Lončar, E.S.; Kolarov, L.J.A. L-lactic, L-ascorbic, total and volatile acids contents in dietetic kombucha beverage. Roum. Biotechnol. Lett. 2002, 7, 891–896. [Google Scholar]
- Vitas, J.S.; Malbaša, R.V.; Grahovac, J.A.; Lončar, E.S. The antioxidant activity of kombucha fermented milk products with stinging nettle and winter savory. CI CEQ 2013, 19, 129–139. [Google Scholar] [CrossRef]
- Greenwalt, C.J.; Steinkraus, K.H.; Ledford, R.A. Kombucha, the fermented tea: Microbiology, composition, and claimed health effects. J. Food Prot. 2000, 63, 976–981. [Google Scholar] [CrossRef] [PubMed]
- Valduga, A.T.; Gonçalves, I.L.; Magri, E.; Delalibera Finzer, J.R. Chemistry, pharmacology and new trends in traditional functional and medicinal beverages. Food Res. Int. 2018. [Google Scholar] [CrossRef]
- Chu, S.C.; Chen, C. Effects of origins and fermentation time on the antioxidant activities of kombucha. Food Chem. 2006, 98, 502–507. [Google Scholar] [CrossRef]
- Jayabalan, R.; Marimuthu, S.; Swaminathan, K. Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chem. 2007, 102, 392–398. [Google Scholar] [CrossRef]
- Jayabalan, R.; Subathradevi, P.; Marimuthu, S.; Sathishkumar, M.; Swaminathan, K. Changes in free radical scavenging ability of kombucha tea during fermentation. Food Chem. 2008, 109, 227–234. [Google Scholar] [CrossRef]
- Lin, Y.L.; Juan, I.M.; Chen, Y.L.; Liang, Y.C.; Lin, J.K. Composition of polyphenols in fresh tea leaves and associations of their oxygen-radical absorbing capacity with antiproliferative actions in fibroblast cells. J. Agric. Food Chem. 1996, 44, 1387–1394. [Google Scholar] [CrossRef]
- Lin, J.K.; Lin, C.L.; Liang, Y.C.; Lin-Shiau, S.Y.; Juan, I.M. Survey of catechins, gallic acid, and methylxanthines in green, oolong, puerh, and black teas. J. Agric. Food Chem. 1998, 46, 3635–3642. [Google Scholar] [CrossRef]
- Villarreal-Soto, S.A.; Beaufort, S.; Bouajila, J.; Souchard, J.P.; Tailandier, P. Understanding kombucha tea fermentation: A review. J. Food Sci. 2018, 83, 580–588. [Google Scholar] [CrossRef]
- Hiremath, U.S.; Vaidehi, M.P.; Mushtari, B.J. Effect of Fermented tea on the blood sugar levels of NIDDM Subjects. Indian Pract. 2002, 55, 423–425. [Google Scholar]
- Joubert, E.; Gelderblom, W.C.A.; Louw, A.; De Beer, D. South African herbal teas: Aspalathus linearis, Cycilopia spp. and Athrixia phylicoides—A review. J. Ethnopharmacol. 2008, 119, 376–412. [Google Scholar] [CrossRef]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity of South African herbal teas: Rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia). Phytoth. Res. 2007, 21, 1–16. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Gachhui, R.; Sil, P.C. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem. Toxicol. 2013, 60, 328–340. [Google Scholar] [CrossRef] [PubMed]
- Mamlouk, D.; Gullo, M. Acetic acid bacteria: Physiology and carbon sources oxidation. Indian J. Microbiol. 2013, 53, 377–384. [Google Scholar] [CrossRef]
- Yamada, Y.; Hosono, R.; Lisdyanti, P.; Widyastuti, Y.; Saono, S.; Uchimura, T.; Komagata, K. Identification of acetic acid bacteria isolated from Indonesian sources, especially of isolates classified in the genus Gluconobacter. J. Gen. Appl. Microbiol. 1999, 45, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, D.; Mazzola, G.; Nikodinoska, I.; Aloisio, I.; Langerholc, T.; Rossi, M.; Raimondi, S.; Melero, B.; Rovira, J. Lactic acid bacteria as protective cultures in fermented pork meat to prevent Clostridium spp. growth. Int. J. Food Microbiol. 2016, 235, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Gaggìa, F.; Baffoni, L.; Stenico, V.; Alberoni, D.; Buglione, E.; Lilli, A.; Di Gioia, D.; Porrini, C. Microbial investigation on honey bee larvae showing atypical symptoms of European foulbrood. Bull. Insectol. 2015, 68, 321–327. [Google Scholar]
- Jeyarama, K.; Mohendro Singha, W.; Capece, A.; Romano, P. Molecular identification of yeast species associated with ‘Hamei’ - A traditional starter used for rice wine production in Manipur, India. Int. J. Food Microbiol. 2008, 124, 115–125. [Google Scholar] [CrossRef]
- Jespersen, L.; Nielsen, D.S.; Hønholt, S.; Jakobsen, M. Occurrence and diversity of yeasts involved in fermentation of West African cocoa beans. FEMS Yeast Res. 2005, 5, 441–453. [Google Scholar] [CrossRef] [Green Version]
- Basic Local Alignment Search Tool. Available online: http://www.ncbi.nlm.nih.gov/BLAST/ (accessed on 6 June 2018).
- GenBank, NCBI Submission Portal. Available online: https://submit.ncbi.nlm.nih.gov/subs/genbank (accessed on 3 September 2018).
- Krych, L.; Kot, W.; Bendtsen, K.M.B.; Hansen, A.K.; Vogensen, F.K.; Nielsen, D.S. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. J. Microbiol. Methods 2018, 144, 1–7. [Google Scholar] [CrossRef]
- Haastrup, M.K.; Johansen, P.; Malskær, A.H.; Castro-Mejía, J.L.; Kot, W.; Krych, L.; Arneborg, N.; Jespersen, L. Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. Int. J. Food Microbiol. 2018, 285, 173–187. [Google Scholar] [CrossRef]
- Edgar, R.C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs. Bioinformatics 2018, 34, 2371–2375. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R. SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv 2016. [Google Scholar] [CrossRef]
- Kim, O.S.; Cho, Y.J.; Lee, K.; Yoon, S.H.; Kim, M.; Na, H.; Park, S.C.; Jeon, Y.S.; Lee, J.H.; Yi, H.; Won, S.; Chun, J. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 2012, 62, 716–721. [Google Scholar] [CrossRef] [PubMed]
- Kõljalg, U.; Nilsson, R.H.; Abarenkov, K.; Tedersoo, L.; Taylor, A.F.; Bahram, M.; Bates, S.T.; Bruns, T.D.; Bengtsson-Palme, J.; Callaghan, T.M.; et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 2013, 22, 5271–5277. [Google Scholar] [Green Version]
- Paulson, J.N.; Stine, O.C.; Bravo, H.C.; Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 2013, 10, 1200–1202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Jesse, R.; Zaneveld, J.R.; Vázquez-Baeza, Y.; et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017, 5, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurdie, P.J.; Holmes, S. Waste not, want not: WHY rarefying microbiome data is inadmissible. PLoS Comput. Biol. 2014, 10, E1003531. [Google Scholar] [CrossRef]
- Crafack, M.; Mikkelsen, M.B.; Saerens, S.; Knudsen, M.; Blennow, A.; Lowor, S.; Takrama, J.; Swiegers, J.H.; Petersen, G.B.; Heimdal, H.; et al. Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int. J. Food Microbiol. 2013, 167, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M.; Lester, P. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Meth. Enzimol. 1999, 299, 152–178. [Google Scholar]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food. Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: THE FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Floegel, A.; Kim, D.O.; Chung, S.J.; Koo, S.I.; Chun, O.K. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011, 24, 1043–1048. [Google Scholar] [CrossRef]
- Naldi, M.; Fiori, J.; Gotti, R.; Périat, A.; Veuthey, J.L.; Guillarme, D.; Andrisano, V. UHPLC determination of catechins for the quality control of green tea. J. Pharm. Biomed. Anal. 2014, 88, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Leoncini, E.; Prata, C.; Malaguti, M.; Marotti, I.; Segura-Carretero, A.; Catizone, P.; Dinelli, G.; Hrelia, S. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars. PLoS ONE 2012, 7, e45997. [Google Scholar] [CrossRef]
- International Organization for Standardization. Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. In ISO 10993-5. International Standard, 3rd ed.; International Organization for Standardization: Geneva, Switzerland, 2009; Available online: https://www.iso.org/standard/36406.html (accessed on 17 February 2018).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: http://www.R-project.org (accessed on 16 April 2018).
- Smith, C.; Swart, A. Aspalathus linearis (Rooibos)—A functional food targeting cardiovascular disease. Food Funct. 2018, 17, 5041–5058. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.K.; Kwak, S.; Kim, Y.; Bae, J.S. Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo. Inflammation 2015, 38, 445–455. [Google Scholar] [CrossRef]
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbial. 2016, 220, 63–72. [Google Scholar] [CrossRef]
- Ramana, K.V.; Batra, H.V. Occurrence of Cellulose-Producing Gluconacetobacter spp. in fruit samples and Kombucha tea, and production of the biopolymer. Appl. Biochem. Biotechnol. 2015, 176, 1162–1173. [Google Scholar]
- Nguyen, N.K.; Nguyen, P.B.; Nguyen, H.T.; Le, P.H. Screening the optimal ratio of symbiosis between isolated yeast and acetic acid bacteria strain from traditional kombucha for high-level production of glucuronic acid. LWT Food Sci. Technol. 2015, 64, 1149–1155. [Google Scholar] [CrossRef]
- Semjonovs, P.; Ruklisha, M.; Paegle, L.; Saka, M.; Treimane, R.; Skute, M.; Cleenwerck, I. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha. Appl. Microbiol. Biotechnol. 2017, 101, 1003–1012. [Google Scholar] [CrossRef]
- Kose, R.; Sunagawa, N.; Yoshida, M.; Tajima, K. One-step production of nanofibrillated bacterial cellulose (NFBC) from waste glycerol using Gluconacetobacter intermedius NEDO-01. Cellulose 2013, 20, 2971–2979. [Google Scholar] [CrossRef]
- Schüller, G.; Hertel, C.; Hammes, W.P. Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int. J. Syst. Evol. Microbiol. 2000, 50, 2013–2020. [Google Scholar] [CrossRef] [PubMed]
- Reva, O.N.; Zaets, I.E.; Ovcharenko, L.P.; Kukharenko, O.E.; Shpylova, S.P.; Podolich, O.V.; Kozyrovska, N.O. Metabarcoding of the kombucha microbial community grown in different microenvironments. AMB Express 2015, 5, 35. [Google Scholar] [CrossRef] [PubMed]
- Rozpedowska, E.; Hellborg, L.; Ishchuk, O.P.; Orhan, F.; Galafassi, S.; Merico, A.; Woolfit, M.; Compagno, C.; Piškur, J. Parallel evolution of the make–accumulate–consume strategy in Saccharomyces and Dekkera yeasts. Nat. Commun. 2011, 2, 302. [Google Scholar] [CrossRef] [PubMed]
- Schifferdecker, A.J.; Dashko, S.; Ishchuk, O.P.; Piškur, J. The wine and beer yeast Dekkera bruxellensis. Yeast 2014, 31, 323–332. [Google Scholar] [CrossRef] [PubMed]
- De Souza Liberal, A.T.; Basílio, A.C.M.; do Monte Resende, A.; Brasileiro, B.T.V.; Da Silva-Filho, E.A.; De Morais, J.O.F.; de Morais, M.A., Jr. Identification of Dekkera bruxellensis as a major contaminant yeast in continuous fuel ethanol fermentation. J. Appl. Microbiol. 2007, 102, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Passoth, V.; Blomqvist, J.; Schnürer, J. Dekkera bruxellensis and Lactobacillus vini form a stable ethanol-producing consortium in a commercial alcohol production process. Appl. Environ. Microbiol. 2007, 73, 4354–4356. [Google Scholar] [CrossRef] [PubMed]
- Shahbazi, H.; Hashemi Gahruie, H.; Golmakani, M.T.; Eskandari, M.H.; Movahedi, M. Effect of medicinal plant type and concentration on physicochemical, antioxidant, antimicrobial, and sensorial properties of kombucha. Food Sci. Nutr. 2018, 6, 2568–2577. [Google Scholar] [CrossRef] [PubMed]
- Vīna, I.; Linde, R.; Patetko, A.; Semjonovs, P. Glucuronic acid from fermented beverages: Biochemical functions in humans and its role in health protection. IJRRAS 2013, 14, 217–230. [Google Scholar]
- Vina, I.; Semjonovs, P.; Linde, R.; Patetko, A. Glucuronic acid containing fermented functional beverages produced by natural yeasts and bacteria associations. Int. J. Res. Rev. Appl. 2013, 14, 17–25. [Google Scholar]
- Martinez Leal, J.; Valenzuela Suárez, L.; Jayabalan, R.; Huerta Oros, J.; Escalante-Aburto, A. A review on health benefits of kombucha nutritional compounds and metabolites. CyTA J. Food 2018, 16, 390–399. [Google Scholar] [CrossRef] [Green Version]
- Ettayebi, K.; Errachidi, F.; Jamai, L.; Tahri-Jouti, M.A.; Sendide, K.; Ettayebi, M. Biodegradation of polyphenols with immobilized Candida tropicalis under metabolic induction. FEMS Microbiol. Lett. 2003, 223, 215–219. [Google Scholar] [CrossRef]
- Tanaka, T.; Matsuo, Y.; Kouno, I. Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int. J. Mol. Sci. 2010, 11, 14–40. [Google Scholar] [CrossRef]
- Dipti, P.; Yogesh, B.; Kain, A.K.; Pauline, T.; Anju, B.; Sairam, M.; Singh, B.; Mongia, S.S.; Kumar, G.I.; Selvamurthy, W. Lead induced oxidative stress: BENEFICIAL effects of Kombucha tea. Biomed. Environ. Sci. 2003, 16, 276–282. [Google Scholar] [PubMed]
- Gharib, O.A. Effects of Kombucha on oxidative stress induced nephrotoxicity in rats. Chin. Med. 2009, 27, 4–23. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Manna, P.; Gachhui, R.; Sil, P.C. Protective effect of kombucha tea against tertiary butyl hydroperoxide induced cytotoxicity and cell death in murine hepatocytes. Indian J. Exp. Biol. 2011, 49, 511–524. [Google Scholar]
- Almajano, M.P.; Carbo, R.; Jiménez, J.A.L.; Gordon, M.H. Antioxidant and antimicrobial activities of tea infusions. Food Chem. 2008, 108, 55–63. [Google Scholar] [CrossRef]
- Lee, W.; Kim, K.M.; Bae, J.S. Ameliorative effect of aspalathin and nothofagin from Rooibos (Aspalathus linearis) on HMGB1-Induced septic responses in vitro and in vivo. Am. J. Chin. Med. 2015, 43, 991–1012. [Google Scholar] [CrossRef]
- Sanderson, M.; Mazibuko, S.E.; Joubert, E.; de Beer, D.; Johnson, R.; Pheiffer, C.; Louw, J.; Muller, C.J. Effects of fermented rooibos (Aspalathus linearis) on adipocyte differentiation. Phytomedicine 2014, 15, 109–117. [Google Scholar] [CrossRef]
- Pringle, N.A.; Koekemoer, T.C.; Holzer, A.; Young, C.; Venables, L.; van de Venter, M. Potential therapeutic benefits of green and fermented Rooibos (Aspalathus linearis) in dermal wound healing. Planta Med. 2018, 84, 645–652. [Google Scholar] [CrossRef]
Isolates | Source | Closest Match (% similarity *) | Accession Number |
---|---|---|---|
FR-3 | Kombucha rooibos | Komagataeibacter spp. (99%) | MK099856 |
FR-10 | Kombucha rooibos | Komagataeibacter spp. (99%) | MK106667 |
FG-14 | Kombucha green tea | Komagataeibacter spp. (99%) | MK099857 |
FB-12 | Film black tea | K. intermedius (100%) | MK099859 |
KB-16 | Kombucha black tea | K. intermedius (100%) | MK099858 |
KG-15 | Kombucha green tea | Komagataeibacter spp. (99%) | MK099860 |
KR-9 | Kombucha rooibos | K. intermedius (100%) | MK099861 |
KR-17 | Kombucha rooibos | K. rhaeticus (100%) | MK099862 |
KR-11 | Kombucha rooibos | G. entanii (100%) | MK099863 |
KR-1 | Kombucha rooibos | Komagataeibacter spp. (99%) | MK099864 |
KR-2 | Kombucha rooibos | G. entanii (100%) | MK099865 |
KR-3 | Kombucha rooibos | Komagataeibacter spp. (99%) | MK099866 |
KR-4 | Kombucha rooibos | G. entanii (100%) | MK099867 |
KR-5 | Kombucha rooibos | G. entanii (100%) | MK099868 |
KG-16 | Kombucha green tea | G. entanii (100%) | MK099869 |
KG-2; | Kombucha green tea | K. intermedius (100%) | MK099870 |
KG-5 | Kombucha green tea | K. intermedius (100%) | MK099871 |
KG-13 | Kombucha green tea | G. entanii (100%) | MK099872 |
KB-17 | Kombucha black tea | K. intermedius (100%) | MK099873 |
KG-14 | Kombucha green tea | Komagataeibacter spp. (99%) | MK099874 |
KG-17 | Kombucha green tea | Komagataeibacter spp. (99%) | MK099875 |
KG-18 | Kombucha green tea | Komagataeibacter spp. (99%) | MK099876 |
KG-26 | Kombucha green tea | Komagataeibacter spp. (99%) | MK099877 |
KG-27 | Kombucha green tea | Komagataeibacter spp. (99%) | MK099878 |
FB-9 | Film black tea | Komagataeibacter spp. (99%) | MK099879 |
KB-25 | Kombucha black tea | Komagataeibacter spp. (99%) | MK099880 |
KR-10 | Kombucha rooibos | Komagataeibacter spp. (99%) | MK099881 |
KR-16 | Kombucha rooibos | Komagataeibacter spp. (99%) | MK099882 |
KR-24 | Kombucha rooibos | Komagataeibacter spp. (99%) | MK099883 |
Isolates | Source | Closest Match (% similarity *) | Accession Number |
---|---|---|---|
YFB-2 | Film black tea | Z. parabailii (99%) | MH930858 |
YFB-9 | Film black tea | B. bruxellensis (100%) | MH930859 |
YFB-18 | Film black tea | B. bruxellensis (99%) | MH930860 |
YFR-15 | Film rooibos | Z. parabailii (99%) | MH930861 |
YFR-6 | Film rooibos | B. bruxellensis (100%) | MH930862 |
YKB-1 | Kombucha black tea | Z. parabailii (99%) | MH930863 |
YKB-2 | Kombucha black tea | Z. parabailii (99%) | MH930864 |
YKB-9 | Kombucha black tea | B. bruxellensis (99%) | MH930865 |
YKR-2 | Kombucha rooibos | B. bruxellensis (100%) | MH930866 |
YKR-3 | Kombucha rooibos | B. bruxellensis (99%) | MH930867 |
Substrate | Glucose | Sucrose | Fructose | |||
---|---|---|---|---|---|---|
7 | 14 | 7 | 14 | 7 | 14 | |
KB | 11.20 ± 0.99 | 15.12 ± 0.64 | 36.23 ± 0.03 | 26.13 ± 0.43 | 4.84 ± 0.001 | 5.50 ± 0.13 |
KG | 11.40 ± 0.22 | 15.89 ± 0.06 | 37.14 ± 0.09 | 26.21 ± 0.14 | 5.12 ± 0.02 | 6.92 ± 0.02 |
KR | 8.60 ± 0.14 A | 18.10 ± 0.20 B | 42.08 ± 0.09 | 33.65 ± 0.05 | 4.07 ± 0.04 A | 8.83 ± 0.04 B |
Substrate | GlcUA | AA | EtOH | |||
---|---|---|---|---|---|---|
7 | 14 | 7 | 14 | 7 | 14 | |
KB | 1.36 ± 0.08 A | 3.23 ± 0.64 B | 3.18 ± 0.003 A | 9.18 ± 0.15 B | 4.69 ± 0.05 b | 5.83 ± 0.08 a |
KG | 1.78 ± 0.12 | 1.96 ± 0.10 | 4.22 ± 0.02 | 7.65 ± 0.003 | 2.81 ± 0.01 ab | 4.18 ± 0.03 ab |
KR | 1.70 ± 0.09 | 2.87 ± 0.47 | 1.65 ± 0.004 | 4.89 ± 0.02 | 0.64 ± 0.01 a | 1.14 ± 0.01 b |
Kombucha | Polyphenols (mg/g DW) | Flavonoids (mg/g DW) | DPPH Test (mmol TE/g DW) | FRAP Test (mmol Fe++/g DW) |
---|---|---|---|---|
K0G | 74.40 ± 1.64 b | 16.57 ± 0.21 b | 0.31 ± 0.01 c | 0.70 ± 0.01 c |
K7G | 100.33 ± 2.36 a | 18.49 ± 0.73 a | 1.31 ± 0.07 a | 1.75 ± 0.06 a |
K14G | 67.40 ± 2.69 c | 15.11 ± 0.22 c | 0.98 ± 0.01 b | 1.13 ± 0.06 b |
K0B | 79.38 ± 0.77 a | 17.97 ± 0.05 a | 0.31 ± 0.01 b | 0.68 ± 0.02 b |
K7B | 64.81 ± 2.91 b | 14.46 ± 0.19 b | 0.87 ± 0.01 a | 0.90 ± 0.04 a |
K14B | 67.20 ± 3.48 b | 13.87 ± 0.79 b | 0.85 ± 0.02 a | 0.86 ± 0.03 a |
K0R | 43.51 ± 2.89 ab | 21.72 ± 0.01 a | 0.18 ± 0.01 c | 0.49 ± 0.05 a |
K7R | 45.32 ± 1.36 a | 18.15 ± 0.52 b | 0.45 ± 0.03 a | 0.52 ± 0.01 a |
K14R | 40.89 ± 1.25 b | 17.33 ± 0.84 c | 0.41 ± 0.01 b | 0.47 ± 0.04 a |
Analyte | Concentration range (ppm) | Calibration equation | R2 | m/z |
---|---|---|---|---|
CKG, KB | 0.05–2.00 | y = 3.73E+06x + 1.76E+04 | 0.9999 | 290.3 |
ECKG | 12.5–50 | y =7.30E+05x + 1.58E+07 | 0.9817 | 290.3 |
ECKB | 0.05–5 | y = 3.34E+06x + 2.54E+04 | 0.9998 | 290.3 |
GCKG, KB | 0.1–5 | y = 3.64E+06x + 1.38E+05 | 0.9962 | 306.3 |
EGCKG | 12.5–80 | y = 9.09E+05x + 1.46E+07 | 0.9941 | 306.3 |
EGCKB | 0.1–5 | y = 2.85E+06x + 3.07E+05 | 0.9843 | 306.3 |
ECGKG, KB | 0.05–1 | y = 5.26E+06x − 7.05E+04 | 0.9999 | 442.4 |
EGCGKG, KB | 12.5–50 | y = 7.11E+05x + 5.88E+05 | 0.9996 | 458.4 |
Kombucha | C | EC | GC | EGC | ECG | EGCG | TOTAL |
---|---|---|---|---|---|---|---|
K0G | 0.173 a | 2.903 a | 0.505 a | 9.086 b | 0.080 | 5.506 a | 18.253 a |
K7G | 0.019 b | 1.541 b | 0.098 c | 7.084 c | n.d. | 1.029 b | 9.770 c |
K14G | 0.019 b | 1.769 b | 0.110 bc | 9.650 a | n.d. | 0.296 c | 11.844 b |
K0B | 0.083 a | 0.413 a | 0.081 a | 0.304 b | 0.095 | 1.209 a | 2.184 a |
K7B | 0.015 b | 0.134 b | 0.026 b | 0.431 a | n.d. | 0.385 b | 0.99 b |
K14B | 0.008 b | 0.080 bc | 0.003 b | 0.270 b | n.d. | 0.104 c | 0.464 c |
K0R | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
K7R | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
K14R | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaggìa, F.; Baffoni, L.; Galiano, M.; Nielsen, D.S.; Jakobsen, R.R.; Castro-Mejía, J.L.; Bosi, S.; Truzzi, F.; Musumeci, F.; Dinelli, G.; et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients 2019, 11, 1. https://doi.org/10.3390/nu11010001
Gaggìa F, Baffoni L, Galiano M, Nielsen DS, Jakobsen RR, Castro-Mejía JL, Bosi S, Truzzi F, Musumeci F, Dinelli G, et al. Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients. 2019; 11(1):1. https://doi.org/10.3390/nu11010001
Chicago/Turabian StyleGaggìa, Francesca, Loredana Baffoni, Michele Galiano, Dennis Sandris Nielsen, Rasmus Riemer Jakobsen, Josue Leonardo Castro-Mejía, Sara Bosi, Francesca Truzzi, Federica Musumeci, Giovanni Dinelli, and et al. 2019. "Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity" Nutrients 11, no. 1: 1. https://doi.org/10.3390/nu11010001
APA StyleGaggìa, F., Baffoni, L., Galiano, M., Nielsen, D. S., Jakobsen, R. R., Castro-Mejía, J. L., Bosi, S., Truzzi, F., Musumeci, F., Dinelli, G., & Di Gioia, D. (2019). Kombucha Beverage from Green, Black and Rooibos Teas: A Comparative Study Looking at Microbiology, Chemistry and Antioxidant Activity. Nutrients, 11(1), 1. https://doi.org/10.3390/nu11010001