Application of Edible Coating Based on Liquid Acid Whey Protein Concentrate with Indigenous Lactobacillus helveticus for Acid-Curd Cheese Quality Improvement
<p>LAB counts (<b>a</b>) in coating solutions and films and pH; (<b>b</b>) in coating solutions at different temperatures (at 4 °C and 23 °C) during their storage. C—plain coating; C + Lh—coating solution with <span class="html-italic">L. helveticus</span>.</p> "> Figure 2
<p>Weight loss (<b>a</b>), moisture content (<b>b</b>), pH (<b>c</b>), lactic acid content (<b>d</b>), texture (<b>e</b>), and colour change (<b>f</b>) in control acid-curd cheese (CC), coated acid-curd cheese (CC + C), coated acid-curd cheese with <span class="html-italic">L. helveticus</span> (CC + C + Lh) during 23 days of storage at 4–6 °C (mean values ± SD).</p> "> Figure 3
<p>Lactic acid bacteria (LAB) (<b>a</b>), yeast (<b>b</b>), and mould (<b>c</b>) counts and lipolytic bacteria (<b>d</b>), are presented for control acid-curd cheese (CC), coated acid-curd cheese (CC + C), and coated acid-curd cheese with <span class="html-italic">L. helveticus</span> (CC + C + Lh) during 23 days of storage at 4–6 °C (mean values ± SD).</p> "> Figure 4
<p>Flavour (<b>a</b>), body and texture (<b>b</b>), appearance (<b>c</b>), and overall acceptability (<b>d</b>) are presented for control curd cheese (CC), coated curd cheese (CC + C), and coated cheese with <span class="html-italic">L. helveticus</span> (CC + C + Lh) during 18 days of sensory evaluation (mean values ± SD).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coating and Film Preparation
2.3. Coating Application on Acid-Curd Cheese
2.4. Cheese Analyses
2.5. Statistical Analysis
3. Results and Discussion
3.1. Survival of L. helveticus in the Coating and Film
3.2. Cheese Storage Trial
3.2.1. Physicochemical Profile
3.2.2. Microbiological Profile
3.2.3. Sensory Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Díaz-Montes, E.; Castro-Muñoz, R. Edible Films and Coatings as Food-Quality Preservers: An Overview. Foods 2021, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Isfari, D.; Lara, U.G. Cheese whey as potential resource for antimicrobial edible film and active packaging production. Foods Raw Mater. 2019, 7, 229–239. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods 2020, 9, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jalilzadeh, A. The Effect of Whey Protein-Based Edible Coating Containing Natamycin and Lysozyme-Xanthan Gum Conjugate on the Shelf Life of Ultrafiltrated White Cheese|Request PDF. Available online: https://www.researchgate.net/publication/351226502_The_effect_of_whey_protein-based_edible_coating_containing_natamycin_and_lysozyme-xanthan_gum_conjugate_on_the_shelf_life_of_ultrafiltrated_white_cheese (accessed on 13 October 2022).
- Ramos, Ó.L.; Pereira, J.O.; Silva, S.I.; Fernandes, J.C.; Franco, M.I.; Lopes-da-Silva, J.A.; Pintado, M.E.; Malcata, F.X. Evaluation of antimicrobial edible coatings from a whey protein isolate base to improve the shelf life of cheese. J. Dairy Sci. 2012, 95, 6282–6292. [Google Scholar] [CrossRef]
- Henriques, M.; Gomes, D.; Pereira, C. Whey Protein Edible Coatings: Recent Developments and Applications. In Food Engineering Series; Springer: New York, NY, USA, 2016; pp. 177–196. [Google Scholar]
- Saklani, P.S.P.; Nath, S.; Das, S.K.; Singh, S.M. A Review of Edible Packaging for Foods. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2885–2895. [Google Scholar] [CrossRef]
- Petkoska, A.T.; Daniloski, D.; D’Cunha, N.M.; Naumovski, N.; Broach, A.T. Edible packaging: Sustainable solutions and novel trends in food packaging. Food Res. Int. 2021, 140, 109981. [Google Scholar] [CrossRef]
- Mazorra-Manzano, M.A.; Robles-Porchas, G.R.; González-Velázquez, D.A.; Torres-Llanez, M.J.; Martínez-Porchas, M.; García-Sifuentes, C.O.; González-Córdova, A.F.; Vallejo-Córdoba, B. Cheese Whey Fermentation by Its Native Microbiota: Proteolysis and Bioactive Peptides Release with ACE-Inhibitory Activity. Fermentation 2020, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Madadlou, A.; Abbaspourrad, A. Bioactive whey peptide particles: An emerging class of nutraceutical carriers. Crit. Rev. Food Sci. Nutr. 2018, 58, 1468–1477. [Google Scholar] [CrossRef]
- Arbizu-Berrocal, S.; Talcott, S.; Noratto, G.; Chew, B.; Talcott, S. Assessing Cheese Whey Components for Their Potential to Improve Intestinal Health (P06-097-19). Curr. Dev. Nutr. 2019, 3, 615. [Google Scholar] [CrossRef] [Green Version]
- Fang, T.; Guo, M. Physicochemical, texture properties, and microstructure of yogurt using polymerized whey protein directly prepared from cheese whey as a thickening agent. J. Dairy Sci. 2019, 102, 7884–7894. [Google Scholar] [CrossRef]
- Henriques, M.H.F.; Gomes, D.M.G.S.; Borges, A.R.; Pereira, C.J.D. Liquid whey protein concentrates as primary raw material for acid dairy gels. Food Sci. Technol. 2019, 40, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Mileriene, J.; Serniene, L.; Kondrotiene, K.; Lauciene, L.; Kasetiene, N.; Sekmokiene, D.; Andruleviciute, V.; Malakauskas, M. Quality and nutritional characteristics of traditional curd cheese enriched with thermo-coagulated acid whey protein and indigenous Lactococcus lactis strain. Int. J. Food Sci. Technol. 2021, 56, 2853–2863. [Google Scholar] [CrossRef]
- Aguirre-Joya, J.A.; De Leon-Zapata, M.A.; Alvarez-Perez, O.B.; Torres-León, C.; Nieto-Oropeza, D.E.; Ventura-Sobrevilla, J.M.; Aguilar, M.A.; Ruelas-Chacón, X.; Rojas, R.; Ramos-Aguiñaga, M.E.; et al. Basic and Applied Concepts of Edible Packaging for Foods. In Food Packaging and Preservation; Academic Press: Cambridge, MA, USA, 2018; pp. 1–61. [Google Scholar] [CrossRef]
- Bagheripoor, N.; Khoshgozaran-Abras, S.; Sohrabvandi, S.; Khorshidian, N.; Mortazavian, A.M.; Mollakhalili, N.; Jazaeri, S. Application of Active Edible Coatings to Improve the Shelf-life of Cheese. Food Sci. Technol. Res. 2018, 24, 949–962. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Gas barrier and wetting properties of whey protein isolate-based emulsion films. Polym. Eng. Sci. 2019, 59, E375–E383. [Google Scholar] [CrossRef]
- Bintsis, T. Lactic acid bacteria as starter cultures: An update in their metabolism and genetics. AIMS Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef]
- Vilela, C.; Kurek, M.; Hayouka, Z.; Röcker, B.; Yildirim, S.; Antunes, M.D.C.; Nilsen-Nygaard, J.; Pettersen, M.K.; Freire, C.S.R. A concise guide to active agents for active food packaging. Trends Food Sci. Technol. 2018, 80, 212–222. [Google Scholar] [CrossRef]
- Pereira, J.O.; Soares, J.; Costa, E.; Silva, S.; Gomes, A.; Pintado, M. Characterization of Edible Films Based on Alginate or Whey Protein Incorporated with Bifidobacterium animalis subsp. lactis BB-12 and Prebiotics. Coatings 2019, 9, 493. [Google Scholar] [CrossRef] [Green Version]
- Siracusa, V.; Karpova, S.; Olkhov, A.; Zhulkina, A.; Kosenko, R.; Iordanskii, A. Gas Transport Phenomena and Polymer Dynamics in PHB/PLA Blend Films as Potential Packaging Materials. Polymers 2020, 12, 647. [Google Scholar] [CrossRef] [Green Version]
- Šipailienė, A.; Petraitytė, S. Encapsulation of Probiotics: Proper Selection of the Probiotic Strain and the Influence of Encapsulation Technology and Materials on the Viability of Encapsulated Microorganisms. Probiotics Antimicrob. Proteins 2018, 10, 1–10. [Google Scholar] [CrossRef]
- Haji, F.; Cheon, J.; Baek, J.; Wang, Q.; Tam, K.C. Application of Pickering emulsions in probiotic encapsulation-A review. Curr. Res. Food Sci. 2022, 5, 1603–1615. [Google Scholar] [CrossRef]
- Mazzantini, D.; Celandroni, F.; Calvigioni, M.; Panattoni, A.; Labella, R.; Ghelardi, E. Microbiological Quality and Resistance to an Artificial Gut Environment of Two Probiotic Formulations. Foods 2021, 10, 2781. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.P.M.; Ribeiro, S.C.; Teixeira, J.A.; Silva, C.C.G. Application of an alginate-based edible coating with bacteriocin-producing Lactococcus strains in fresh cheese preservation. LWT 2022, 153, 112486. [Google Scholar] [CrossRef]
- Olivo, P.M.; Scapim, M.R.D.S.; Maia, L.F.; Miazaki, J.; Rodrigues, B.M.; Madrona, G.S.; Bankuti, F.I.; Pozza, M.S.D.S. Probiotic Coating for Ripened Cheeses with Lactobacillus Acidophilus and Lactobacillus Helveticus Inclusion. J. Agric. Stud. 2020, 8, 152. [Google Scholar] [CrossRef] [Green Version]
- Šalomskienė, J.; Abraitiene, A.; Jonkuvienė, D.; Macioniene, I.; Repečkienė, J. Selection of enhanced antimicrobial activity posing lactic acid bacteria characterised by (GTG)5-PCR fingerprinting. J. Food Sci. Technol. 2015, 52, 4124–4134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO/TS 11869:2012; Fermented Milks—Determination of Titratable Acidity—Potentiometric Method. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO 5534:2004; Cheese and Processed Cheese. Determination of the Total Solids Content (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 1735:2004; Cheese and Processed Cheese Products. Determination of Fat Content. Gravimetric Method. International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 22662:2007; Milk and Milk Products—Determination of Lactose Content by High-Performance Liquid Chromatography (Reference Method). International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 8968-3:2004; Milk—Determination of Nitrogen Content—Part 3: Block-Digestion Method (Semi-Micro Rapid Routine Method). International Organization for Standardization: Geneva, Switzerland, 2004.
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. International Organization for Standardization: Geneva, Switzerland, 1998.
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 4832:2006; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coliforms—Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 6611:2004; Milk and Milk Products—Enumeration of Colony-Forming Units of Yeasts and/or Moulds—Colony-Count Technique at 25 Degrees C. International Organization for Standardization: Geneva, Switzerland, 2004.
- Muys, G.T.; Willemse, R. The detection and enumeration of lipolytic microorganisms by means of a modified Eykman-plate method. Antonie Van Leeuwenhoek 1965, 31, 103–112. [Google Scholar] [CrossRef]
- ISO 8586:2012; Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- Bodyfelt, F.W.; Tobias, J.; Trout, G.M. The Sensory Evaluation of Dairy Products; Van Nostrand Reinhold: New York, NY, USA, 1988; pp. 1–7, 59–88. [Google Scholar]
- Pereira, J.O.; Soares, J.; Sousa, S.; Madureira, A.R.; Gomes, A.; Pintado, M. Edible films as carrier for lactic acid bacteria. LWT 2016, 73, 543–550. [Google Scholar] [CrossRef]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Yonekura, L.; Parmenter, C.; Fisk, I.D. Stability of Lactobacillus rhamnosus GG in prebiotic edible films. Food Chem. 2014, 159, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, P.; Mariniello, L.; Giosafatto, V.L.; Esposito, M.; Sabbah, M.; Porta, R. Dairy Whey Protein-Based Edible Films and Coatings for Food Preservation. In Food Packaging and Preservation; Elsevier: Cambridge, MA, USA, 2018; pp. 439–456. [Google Scholar]
- Mileriene, J.; Serniene, L.; Henriques, M.; Gomes, D.; Pereira, C.; Kondrotiene, K.; Kasetiene, N.; Lauciene, L.; Sekmokiene, D.; Malakauskas, M. Effect of liquid whey protein concentrate–based edible coating enriched with cinnamon carbon dioxide extract on the quality and shelf life of Eastern European curd cheese. J. Dairy Sci. 2021, 104, 1504–1517. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Ma, D.; Qin, W.; Liu, Y. Physical and Antibacterial Properties of Sodium Alginate—Sodium Carboxymethylcellulose Films Containing Lactococcus lactis. Molecules 2018, 23, 2645. [Google Scholar] [CrossRef] [PubMed]
- Mileriene, J.; Serniene, L.; Kondrotiene, K.; Lauciene, L.; Andruleviciute, V.; Kasetiene, N.; Sekmokiene, D.; Malakauskas, M. Effect of Indigenous Lactococcus lactis on physicochemical and sensory properties of thermo-coagulated acid whey protein. J. Food Process. Preserv. 2021, 45, e15420. [Google Scholar] [CrossRef]
- Hassanien, M.F.R.; Mahgoub, S.A.; El-Zahar, K.M. Soft cheese supplemented with black cumin oil: Impact on food borne pathogens and quality during storage. Saudi J. Biol. Sci. 2014, 21, 280–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drake, M.A.; Delahunty, C.M. Sensory Character of Cheese And Its Evaluation. In Cheese: Chemistry, Physics and Microbiology: Fourth Edition; Elsevier Inc.: Cambridge, MA, USA, 2017; Volume 1, pp. 517–545. ISBN 9780122636530. [Google Scholar]
- Pappa, E.C.; Bontinis, T.G.; Tasioula-Margari, M.; Samelis, J. Microbial Quality and Biochemical Changes of Fresh Soft, Acid-Curd Xinotyri Cheese Made from Raw or Pasteurized Goat Milk. Food Technol. Biotechnol. 2017, 55, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Garnier, L.; Valence, F.; Mounier, J. Diversity and Control of Spoilage Fungi in Dairy Products: An Update. Microorganisms 2017, 5, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šalomskienė, J.; Mačionienė, I. Instruction of Microbiological Control for Milk Processing Plants. 2nd Updated and Supplemented Edition, 2nd ed.; JSC Smaltija Publishing House: Kaunas, Lithuania, 2004. [Google Scholar]
- Guimarães, A.; Ramos, Ó.; Cerqueira, M.; Venâncio, A.; Abrunhosa, L. Active Whey Protein Edible Films and Coatings Incorporating Lactobacillus Buchneri for Penicillium Nordicum Control in Cheese. Food Bioprocess Technol. 2020, 13, 1074–1086. [Google Scholar] [CrossRef]
D1 | D23 | |||||
---|---|---|---|---|---|---|
Content | CC | CC + C | CC + C + Lh | CC | CC + C | CC + C + Lh |
Dry matter, % | 33.74 ± 0.83 * | 34.29 ± 0.82 * | 34.69 ± 1.49 * | 57.21 ± 0.78 * | 43.63 ± 1.41 B * | 45.52 ± 0.6 C * |
Fat,% | 0.56 ± 0.03 A * | 0.65 ± 0.01 | 0.70 ± 0.00 B * | 1.26 ± 0.03 A * | 1.35 ± 0.01 * | 1.52 ± 0.01 B * |
Protein, % | 30.62 ± 0.03 * | 30.12 ± 0.01 * | 30.28 ± 0.01 * | 46.62 ± 0.03 * | 40.72 ± 0.01 B * | 40.16 ± 0.02 B * |
Lactose, % | 2.49 ± 0.04 A * | 3.03 ± 0.01 * | 3.22 ± 0.00 B * | 1.39 ± 0.04 A * | 1.42 ± 0.01 A * | 1.22 ± 0.02 B * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasiliauskaite, A.; Mileriene, J.; Songisepp, E.; Rud, I.; Muizniece-Brasava, S.; Ciprovica, I.; Axelsson, L.; Lutter, L.; Aleksandrovas, E.; Tammsaar, E.; et al. Application of Edible Coating Based on Liquid Acid Whey Protein Concentrate with Indigenous Lactobacillus helveticus for Acid-Curd Cheese Quality Improvement. Foods 2022, 11, 3353. https://doi.org/10.3390/foods11213353
Vasiliauskaite A, Mileriene J, Songisepp E, Rud I, Muizniece-Brasava S, Ciprovica I, Axelsson L, Lutter L, Aleksandrovas E, Tammsaar E, et al. Application of Edible Coating Based on Liquid Acid Whey Protein Concentrate with Indigenous Lactobacillus helveticus for Acid-Curd Cheese Quality Improvement. Foods. 2022; 11(21):3353. https://doi.org/10.3390/foods11213353
Chicago/Turabian StyleVasiliauskaite, Agne, Justina Mileriene, Epp Songisepp, Ida Rud, Sandra Muizniece-Brasava, Inga Ciprovica, Lars Axelsson, Liis Lutter, Elvidas Aleksandrovas, Ene Tammsaar, and et al. 2022. "Application of Edible Coating Based on Liquid Acid Whey Protein Concentrate with Indigenous Lactobacillus helveticus for Acid-Curd Cheese Quality Improvement" Foods 11, no. 21: 3353. https://doi.org/10.3390/foods11213353
APA StyleVasiliauskaite, A., Mileriene, J., Songisepp, E., Rud, I., Muizniece-Brasava, S., Ciprovica, I., Axelsson, L., Lutter, L., Aleksandrovas, E., Tammsaar, E., Salomskiene, J., Serniene, L., & Malakauskas, M. (2022). Application of Edible Coating Based on Liquid Acid Whey Protein Concentrate with Indigenous Lactobacillus helveticus for Acid-Curd Cheese Quality Improvement. Foods, 11(21), 3353. https://doi.org/10.3390/foods11213353