Bibliometric Analysis of Research Trends in Water Management Aimed at Increasing the Sustainability of the Socio-Economic Development of a Region
<p>Annual number of publications on water management issues. Note: Compiled by the authors according to the source: <a href="https://www.sciencedirect.com" target="_blank">https://www.sciencedirect.com</a> (accessed on 11 October 2023).</p> "> Figure 2
<p>Data on the annual number of publications from the top 3 countries by the number of publications. Note: Compiled by the authors according to the source: <a href="https://www.scival.com" target="_blank">https://www.scival.com</a> (accessed on 11 October 2023).</p> "> Figure 3
<p>The relationship of keywords in publications on water management issues.</p> ">
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Quantitative Characteristics of the Subject Field of the Research
3.2. Subject Field of the Research
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gribova, E.V. Environmentally sustainable management of water resources. Natl. Interests Priorities Saf. 2015, 2, 22–35. [Google Scholar]
- Xu, H.; Berres, A.; Liu, Y.; Allen-Dumas, M.R.; Sanyal, J. An overview of visualization and visual analytics applications in water resources management. Environ. Model. Softw. 2022, 153, 105396. [Google Scholar] [CrossRef]
- Phan, T.D.; Bertone, E.; Stewart, R.A. Critical review of system dynamics modelling applications for water resources planning and management. Clean. Environ. Syst. 2021, 2, 100031. [Google Scholar] [CrossRef]
- Hernández-Cruz, A.; Sandoval-Solís, S.; Mendoza-Espinosa, L.G. An overview of modeling efforts of water resources in Mexico: Challenges and opportunities. Environ. Sci. Policy 2022, 136, 510–519. [Google Scholar] [CrossRef]
- Yang, X.; Sun, B.; Lei, S.; Li, F.; Qu, Y. A bibliometric analysis and review of water resources carrying capacity using rené descartes’s discourse theory. Front. Earth Sci. 2022, 10, 970582. [Google Scholar] [CrossRef]
- Bennett, A.; Demaine, J.; Dorea, C.; Cassivi, A. A bibliometric analysis of global research on drinking water and health in low- and lower-middle-income countries. J. Water Health 2023, 21, 417–438. [Google Scholar] [CrossRef]
- Ahmed, M.E.; Zafar, A.M.; Hamouda, M.A.; Hassan, A.A.; Arimbrathodi, S. Biodesalination Research Trends: A Bibliometric Analysis and Recent Developments. Sustainability 2022, 15, 16. [Google Scholar] [CrossRef]
- Nikitaeva, A.Y.; Chernova, O.A.; Dolgova, O.I. Conceptualization for Decision-Making on Circular Economy Development in the Russian Black Sea Regions. Reg. Econ. South Russ. 2022, 10, 62–175. [Google Scholar] [CrossRef]
- Yang, D.; Yang, Y.; Xia, J. Hydrological cycle and water resources in a changing world: A review. Geogr. Sustain. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Bello, A.S.; Zouari, N.; Da’Ana, D.A.; Hahladakis, J.N.; Al-Ghouti, M.A. An overview of brine management: Emerging desalination technologies, life cycle assessment, and metal recovery methodologies. J. Environ. Manag. 2021, 288, 112358. [Google Scholar] [CrossRef]
- Rana, I.A. Disaster and climate change resilience: A bibliometric analysis. Int. J. Disaster Risk Reduct. 2020, 50, 101839. [Google Scholar] [CrossRef]
- Kim, B.J.; Jeong, S.; Chung, J.-B. Research trends in vulnerability studies from 2000 to 2019: Findings from a bibliometric analysis. Int. J. Disaster Risk Reduct. 2021, 56, 102141. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Junni, P.; Sarala, R.M.; Taras, V.; Tarba, S.Y. Organizational Ambidexterity and Performance: A Meta-Analysis. Acad. Manag. Perspect. 2013, 27, 299–312. [Google Scholar] [CrossRef]
- Combs, J.G.; Ketchen, J.K., Jr.; Crook, T.R.; Roth, P.L. Assessing Cumulative Evidence within ‘Macro’ Research: Why Meta-Analysis Should be Preferred Over Vote Counting. J. Manag. Stud. 2011, 48, 178–197. [Google Scholar] [CrossRef]
- MacCoun, R.J. Biases in the interpretation and use of research results. Annu. Rev. Psychol. 1998, 49, 259–287. [Google Scholar] [CrossRef]
- Tables: Countries/Territories—Earth & Environmental Sciences. Available online: https://www.nature.com/nature-index/annual-tables/2023/country/earth-and-environmental/all (accessed on 11 October 2023).
- National Bureau of Statistics of China. Available online: http://www.stats.gov.cn/enGliSH/ (accessed on 15 September 2017).
- Chernova, O. The effect of Open Access on scientometric indicators of Russian economic journals. Upravlenets 2022, 13, 69–82. [Google Scholar] [CrossRef]
- Maier, D.; Maier, A.; Așchilean, I.; Anastasiu, L.; Gavriș, O. The Relationship between Innovation and Sustainability: A Bibliometric Review of the Literature. Sustainability 2020, 12, 4083. [Google Scholar] [CrossRef]
- Hülsmann, S.; Sušnik, J.; Rinke, K.; Langan, S.; van Wijk, D.; Janssen, A.B.; Mooij, W.M. Integrated modelling and management of water resources: The ecosystem perspective on the nexus approach. Curr. Opin. Environ. Sustain. 2019, 40, 14–20. [Google Scholar] [CrossRef]
- Núñez-López, J.M.; Rubio-Castro, E.; Ponce-Ortega, J.M. Optimizing resilience at water-energy-food nexus. Comput. Chem. Eng. 2022, 160, 107710. [Google Scholar] [CrossRef]
- Mansour, F.; Al-Hindi, M.; Najm, M.A.; Yassine, A. Multi-objective optimization for comprehensive water, energy, food nexus modeling. Sustain. Prod. Consum. 2023, 38, 295–311. [Google Scholar] [CrossRef]
- Wu, L.; Elshorbagy, A.; Helgason, W. Assessment of agricultural adaptations to climate change from a water-energy-food nexus perspective. Agric. Water Manag. 2023, 284, 108343. [Google Scholar] [CrossRef]
- Zolghadr-Asli, B.; McIntyre, N.; Djordjevic, S.; Farmani, R.; Pagliero, L. The sustainability of desalination as a remedy to the water crisis in the agriculture sector: An analysis from the climate-water-energy-food nexus perspective. Agric. Water Manag. 2023, 286, 108407. [Google Scholar] [CrossRef]
- Navarro-Ramírez, V.; Ramírez-Hernandez, J.; Gil-Samaniego, M.; Rodríguez-Burgueño, J.E. Methodological frameworks to assess sustainable water resources management in industry: A review. Ecol. Indic. 2020, 119, 106819. [Google Scholar] [CrossRef]
- Huang, D.; Wen, F.; Li, G.; Wang, Y. Coupled development of the urban water-energy-food nexus: A systematic analysis of two megacities in China’s Beijing-Tianjin-Hebei area. J. Clean. Prod. 2023, 419, 138051. [Google Scholar] [CrossRef]
- Ding, T.; Fang, L.; Chen, J.; Ji, J.; Fang, Z. Exploring the relationship between water-energy-food nexus sustainability and multiple ecosystem services at the urban agglomeration scale. Sustain. Prod. Consum. 2023, 35, 184–200. [Google Scholar] [CrossRef]
- Lalawmpuii; Rai, P.K. Role of water-energy-food nexus in environmental management and climate action. Energy Nexus 2023, 11, 100230. [Google Scholar] [CrossRef]
- Vargas, D.C.M.; Hoyos, C.d.P.Q.; Manrique, O.L.H. The water-energy-food nexus in biodiversity conservation: A systematic review around sustainability transitions of agricultural systems. Heliyon 2023, 9, e17016. [Google Scholar] [CrossRef]
- Villicaña-García, E.; Cansino-Loeza, B.; Ponce-Ortega, J.M. Applying the “matching law” optimization approach to promote the sustainable use of resources in the water-energy-food nexus. Sustain. Prod. Consum. 2023; in press. [Google Scholar] [CrossRef]
- He, Y.; Tu, Y.; Liu, J.; Shi, H.; Lev, B. Quartet trade-off for regional water resources allocation optimization with multiple water sources: A decentralized bi-level multi-objective model under hybrid uncertainty. J. Hydrol. 2023, 619, 129341. [Google Scholar] [CrossRef]
- Fu, G.; Jin, Y.; Sun, S.; Yuan, Z.; Butler, D. The role of deep learning in urban water management: A critical review. Water Res. 2022, 223, 118973. [Google Scholar] [CrossRef]
- Vandôme, P.; Leauthaud, C.; Moinard, S.; Sainlez, O.; Mekki, I.; Zairi, A.; Belaud, G. Making technological innovations accessible to agricultural water management: Design of a low-cost wireless sensor network for drip irrigation monitoring in Tunisia. Smart Agric. Technol. 2023, 4, 100227. [Google Scholar] [CrossRef]
- Li, X.; Luo, J.; Li, Y.; Wang, W.; Hong, W.; Liu, M.; Li, X.; Lv, Z. Application of effective water-energy management based on digital twins technology in sustainable cities construction. Sustain. Cities Soc. 2022, 87, 104241. [Google Scholar] [CrossRef]
- O’callaghan, P.; Adapa, L.M.; Buisman, C. How can innovation theories be applied to water technology innovation? J. Clean. Prod. 2021, 276, 122910. [Google Scholar] [CrossRef]
- Wehn, U.; Vallejo, B.; Seijger, C.; Tlhagale, M.; Amorsi, N.; Sossou, S.K.; Genthe, B.; Onema, J.M.K. Strengthening the knowledge base to face the impacts of climate change on water resources in Africa: A social innovation perspective. Environ. Sci. Policy 2021, 116, 292–300. [Google Scholar] [CrossRef]
- Mitrofanova, I.; Chernova, O.; Pyankova, S.; Kleitman, E. Environmental and Economic Risks in Estimating Investment Potential of Coastal Areas of the South of Russia. Int. J. Qual. Res. 2021, 15, 961–976. [Google Scholar] [CrossRef]
- Chen, X.; Zheng, Y.; Xu, B.; Wang, L.; Han, F.; Zhang, C. Balancing competing interests in the Mekong River Basin via the operation of cascade hydropower reservoirs in China: Insights from system modeling. J. Clean. Prod. 2020, 254, 119967. [Google Scholar] [CrossRef]
- Tang, Y.; Zhou, Q.; Jiao, J.-L. Evaluating water ecological achievements of leading cadres in Anhui, China: Based on water resources balance sheet and pressure-state-response model. J. Clean. Prod. 2020, 269, 122284. [Google Scholar] [CrossRef]
- Matveeva, L.G.; Chernova, O.A.; Kosolapova, N.A.; Kosolapov, A.E. Assessment Of Water Resources Use Efficiency Based on the Russian Federation’s Gross Regional Product Water Intensity Indicator. Reg. Stat. 2018, 8, 154–169. [Google Scholar] [CrossRef]
- Kosolapov, A.; Matveeva, L.; Chernova, O.; Kosolapova, N. Efficiency of water resource use in economics of the north Caucasus mountain territories. Sustain. Dev. Mt. Territ. 2018, 10–11, 48–62. [Google Scholar] [CrossRef]
- Yuan, M.; Chen, X.; Liu, G.; Ren, H. Coordinated allocation of water resources and wastewater emission permits based on multi-objective optimization model: From the perspective of conflict between equity and economic benefits. J. Clean. Prod. 2022, 372, 133733. [Google Scholar] [CrossRef]
- Kosolapova, N.; Matveeva, L.; Nikitaeva, A.; Chernova, O. The drivers of the circular economy: Theory vs. practice. Terra Econ. 2023, 21, 68–83. [Google Scholar] [CrossRef]
- Mannina, G.; Gulhan, H.; Ni, B.-J. Water reuse from wastewater treatment: The transition towards circular economy in the water sector. Bioresour. Technol. 2022, 363, 127951. [Google Scholar] [CrossRef] [PubMed]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Ricart, S.; Rico, A.M. Assessing technical and social driving factors of water reuse in agriculture: A review on risks, regulation and the yuck factor. Agric. Water Manag. 2019, 217, 426–439. [Google Scholar] [CrossRef]
- Dziedzic, M.; Gomes, P.R.; Angilella, M.; El Asli, A.; Berger, P.; Charmier, A.J.; Chen, Y.-C.; Dasanayake, R.; Dziedzic, R.; Ferro, F.; et al. International circular economy strategies and their impacts on agricultural water use. Clean. Eng. Technol. 2022, 8, 100504. [Google Scholar] [CrossRef]
- Hernández-Chover, V.; Castellet-Viciano, L.; Bellver-Domingo, Á.; Hernández-Sancho, F. The Potential of Digitalization to Promote a Circular Economy in the Water Sector. Water 2022, 14, 3722. [Google Scholar] [CrossRef]
- Mihai, F.-C.; Minea, I.; Ulman, S.-R. Chapter 8—Water Resources Preservation through Circular Economy: The Case of Romania; Zamparas, M.G., Kyriakopoulos, G.L., Eds.; Water Management and Circular Economy; Elsevier: Amsterdam, The Netherlands, 2023; pp. 143–176. [Google Scholar] [CrossRef]
- Breitenmoser, L.; Quesada, G.C.; Anshuman, N.; Bassi, N.; Dkhar, N.B.; Phukan, M.; Kumar, S.; Babu, A.N.; Kierstein, A.; Campling, P.; et al. Perceived drivers and barriers in the governance of wastewater treatment and reuse in India: Insights from a two-round Delphi study. Resour. Conserv. Recycl. 2022, 182, 106285. [Google Scholar] [CrossRef]
- Koseoglu-Imer, D.Y.; Oral, H.V.; Calheiros, C.S.C.; Krzeminski, P.; Güçlü, S.; Pereira, S.A.; Surmacz-Górska, J.; Plaza, E.; Samaras, P.; Binder, P.M.; et al. Current challenges and future perspectives for the full circular economy of water in European countries. J. Environ. Manag. 2023, 345, 118627. [Google Scholar] [CrossRef]
- Burt, Z.; Ercümen, A.; Billava, N.; Ray, I. From intermittent to continuous service: Costs, benefits, equity and sustainability of water system reforms in Hubli-Dharwad, India. World Dev. 2018, 109, 121–133. [Google Scholar] [CrossRef]
- Wang, Z.; Lin, L.; Zhang, B.; Xu, H.; Xue, J.; Fu, Y.; Zeng, Y.; Li, F. Sustainable urban development based on an adaptive cycle model: A coupled social and ecological land use development model. Ecol. Indic. 2023, 154, 110666. [Google Scholar] [CrossRef]
- Tan, S.; Yao, L. Managing and optimizing urban water supply system for sustainable development: Perspectives from water-energy-carbon nexus. Sustain. Prod. Consum. 2023, 37, 39–52. [Google Scholar] [CrossRef]
- Abubakari, M.; Ibrahim, A.-S.; Dosu, B.; Mahama, M. Sustaining the urban commons in Ghana through decentralized planning. Heliyon 2023, 9, e15895. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Gong, M.; Xu, Z.; Qu, S. Urban scaling patterns for sustainable development goals related to water, energy, infrastructure, and society in China. Resour. Conserv. Recycl. 2022, 185, 106443. [Google Scholar] [CrossRef]
- Fishman, R.; Giné, X.; Jacoby, H.G. Efficient irrigation and water conservation: Evidence from South India. J. Dev. Econ. 2023, 162, 103051. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Sun, J.; Huang, G. Optimizing water resources allocation and soil salinity control for supporting agricultural and environmental sustainable development in Central Asia. Sci. Total. Environ. 2020, 704, 135281. [Google Scholar] [CrossRef]
- Kotir, J.H.; Smith, C.; Brown, G.; Marshall, N.; Johnstone, R. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana. Sci. Total. Environ. 2016, 573, 444–457. [Google Scholar] [CrossRef]
- Feng, T.; Liu, B.; Ren, H.; Yang, J.; Zhou, Z. Optimized model for coordinated development of regional sustainable agriculture based on water–energy–land–carbon nexus system: A case study of Sichuan Province. Energy Convers. Manag. 2023, 291, 117261. [Google Scholar] [CrossRef]
- Matveeva, L.G.; Southern Federal University; Chernova, O.A.; Kosolapova, N.A. The Federal Water Resources Agency Pricing Problems in the Competitive Environment of Water-Economic Complex in the Region. Zhurnal Econ. Teor. 2020, 17, 424–432. [Google Scholar] [CrossRef]
- Bajaj, A.; Singh, S.; Nayak, D. Impact of water markets on equity and efficiency in irrigation water use: A systematic review and meta-analysis. Agric. Water Manag. 2022, 259, 107182. [Google Scholar] [CrossRef]
- Nouri, A.; Saghafian, B.; Bazargan-Lari, M.R.; Delavar, M. Local water market development based on multi-agent based simulation approach. Groundw. Sustain. Dev. 2022, 19, 100826. [Google Scholar] [CrossRef]
- Tu, Y.; Shi, H.; Zhou, X.; Lev, B. Optimal trade-off of integrated river basin water resources allocation considering water market: A bi-level multi-objective model with conditional value-at-risk constraints. Comput. Ind. Eng. 2022, 169, 108160. [Google Scholar] [CrossRef]
- Stein, U.; Bueb, B.; Knieper, C.; Tröltzsch, J.; Vidaurre, R.; Favero, F. The diagnostic water governance tool − supporting cross-sectoral cooperation and coordination in water resources management. Environ. Sci. Policy 2023, 140, 111–121. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Chew, A.; Meng, X.; Cai, J.; Pok, J.; Kalfarisi, R.; Lai, K.C.; Hew, S.F.; Wong, J.J. High Fidelity Digital Twin-Based Anomaly Detection and Localization for Smart Water Grid Operation Management. Sustain. Cities Soc. 2023, 91, 104446. [Google Scholar] [CrossRef]
- Chang, F.-J.; Wang, K.-W. A systematical water allocation scheme for drought mitigation. J. Hydrol. 2013, 507, 124–133. [Google Scholar] [CrossRef]
- Goap, A.; Sharma, D.; Shukla, A.K.; Krishna, C.R. An IoT based smart irrigation management system using Machine learning and open source technologies. Comput. Electron. Agric. 2018, 155, 41–49. [Google Scholar] [CrossRef]
- Baker, S. China sees renewed surge in natural sciences. Nature 2023, 620, S1. [Google Scholar] [CrossRef]
- Woolston, C. What China’s leading position in natural sciences means for global research. Nature 2023, 620, S2–S5. [Google Scholar] [CrossRef]
Journal Title | Country | Quartile | Number of Publications | Citation Count |
---|---|---|---|---|
Water (Switzerland) | Switzerland | Q1 | 769 | 9999 |
Journal of Cleaner Production | Great Britain | Q1 | 397 | 11,539 |
Sustainability | Switzerland | Q1 | 385 | 4406 |
Water Resources Management | the Netherlands | Q1 | 371 | 8124 |
Science of the Total Environment | the Netherlands | Q1 | 316 | 9993 |
Water Policy | Great Britain | Q2 | 314 | 3354 |
Water International | Great Britain | Q2 | 287 | 4671 |
Agricultural Water Management | the Netherlands | Q1 | 281 | 6607 |
International Journal of Water Resources Development | Great Britain | Q1 | 275 | 4384 |
Journal of Hydrology | the Netherlands | Q1 | 251 | 7881 |
Subject | Number of Publications | Field-Weighted Citation Impact | Prominence Percentile |
---|---|---|---|
Production and consumer water footprint | 5039 | 1.63 | 99.8 |
Water market, pricing for water resources | 1117 | 1.08 | 92.8 |
Hydropower | 1019 | 1.02 | 96.9 |
Political ecology | 878 | 1.67 | 92.2 |
Water resources and climate change | 482 | 1.18 | 88.3 |
Water security | 420 | 1.03 | 89.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mingaleva, Z.; Chernova, O.; Mitrofanova, I.V. Bibliometric Analysis of Research Trends in Water Management Aimed at Increasing the Sustainability of the Socio-Economic Development of a Region. Water 2023, 15, 3688. https://doi.org/10.3390/w15203688
Mingaleva Z, Chernova O, Mitrofanova IV. Bibliometric Analysis of Research Trends in Water Management Aimed at Increasing the Sustainability of the Socio-Economic Development of a Region. Water. 2023; 15(20):3688. https://doi.org/10.3390/w15203688
Chicago/Turabian StyleMingaleva, Zhanna, Olga Chernova, and Inna V. Mitrofanova. 2023. "Bibliometric Analysis of Research Trends in Water Management Aimed at Increasing the Sustainability of the Socio-Economic Development of a Region" Water 15, no. 20: 3688. https://doi.org/10.3390/w15203688
APA StyleMingaleva, Z., Chernova, O., & Mitrofanova, I. V. (2023). Bibliometric Analysis of Research Trends in Water Management Aimed at Increasing the Sustainability of the Socio-Economic Development of a Region. Water, 15(20), 3688. https://doi.org/10.3390/w15203688