Characterization of Mixtures Based on High-Density Polyethylene and Plasticized Starch
<p>The SEM micrographs for the cryo-fractured cross-sections of H0–H5 samples, after 48 h treatment with HCl 6 N at 60 °C.</p> "> Figure 2
<p>TG and DSC curves for H0–H5 polymeric blends.</p> "> Figure 3
<p>Detail of the TG and DSC curves for H0–H5 samples between 100–180 °C.</p> "> Figure 4
<p>FTIR spectra for H0–H5 samples.</p> "> Figure 5
<p>FTIR maps for H0–H5 samples.</p> "> Figure 5 Cont.
<p>FTIR maps for H0–H5 samples.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Obtaining Plasticized Starch
2.3. Obtaining the Mixtures
2.4. Obtaining Test Specimens
2.5. Laboratory Tests
3. Results and Discussion
3.1. Scanning Electron Microscopy
3.2. Thermal Analyses
3.3. FTIR Spectroscopy and Microscopy
3.4. Physical-Mechanical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yue, H.; Yan, X.; Huang, C.; Zhang, H.; Yang, J.; Fang, L.; Kim, H.-S. Preparation of High-Performance Polyethylene Nanocomposites with Oleic Acid–Siloxene-Supported Ziegler–Natta Catalysts. Molecules 2024, 29, 3662. [Google Scholar] [CrossRef] [PubMed]
- Zighed, M.; Benotmane, B.; Ferkous, H.; Ramdane, N.; Boublia, A.; Ahmed, M.; Bourbia, A.; Lemboub, S.; Yadav, K.K.; Benguerba, Y. Biodegradability assessment of HDPE-based biocomposites: Influence of starch and fiber composition. Mater. Today Commun. 2024, 40, 109786. [Google Scholar] [CrossRef]
- Available online: https://www.fortunebusinessinsights.com/industry-reports/polyethylene-pe-market-101584 (accessed on 20 January 2024).
- Available online: https://www.grandviewresearch.com/industry-analysis/polyethylene-pe-market (accessed on 30 January 2024).
- Tarani, E.; Arvanitidis, I.; Christofilos, D.; Bikiaris, D.N.; Chrissafis, K.; Vourlias, G. Calculation of the degree of crystallinity of HDPE/GNPs nanocomposites by using various experimental techniques: A comparative study. J. Mater. Sci. 2023, 58, 1621–1639. [Google Scholar] [CrossRef]
- Zeraatpishe, M.; Hassanajili, S. Investigation of physical and rheological properties of LDPE/HDPE/thermoplastic starch biodegradable blend films. Polym. Eng. Sci. 2023, 63, 3116–3134. [Google Scholar] [CrossRef]
- Neto, J.F.d.M.; Alves de Souza, I.; Feitor, M.C.; Targino, T.G.; Diniz, G.F.; Libório, M.S.; Sousa, R.R.M.; Costa, T.H.d.C. Study of High-Density Polyethylene (HDPE) Kinetics Modification Treated by Dielectric Barrier Discharge (DBD) Plasma. Polymers 2020, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Salakhov, I.I.; Shaidullin, N.M.; Chalykh, A.E.; Matsko, M.A.; Shapagin, A.V.; Batyrshin, A.Z.; Shandryuk, G.A.; Nifant’ev, I.E. Low-Temperature Mechanical Properties of High-Density and Low-Density Polyethylene and Their Blends. Polymers 2021, 13, 1821. [Google Scholar] [CrossRef]
- Amjadi, M.; Fatemi, A. Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate. Polymers 2020, 12, 1857. [Google Scholar] [CrossRef]
- Kurzweg, L.; Hauffe, M.; Schirrmeister, S.; Adomat, Y.; Socher, M.; Grischek, T.; Fery, A.; Harre, K. Microplastic analysis in sediments of the Elbe River by electrostatic separation and differential scanning calorimetry. Sci. Total Environ. 2024, 930, 172514. [Google Scholar] [CrossRef]
- Schirrmeister, S.; Kurzweg, L.; Gjashta, X.; Socher, M.; Fery, A.; Harre, K. Regression analysis for the determination of microplastics in sediments using differential scanning calorimetry. Environ. Sci. Pollut. Res. 2024, 31, 31001–31014. [Google Scholar] [CrossRef]
- Aslam, S.; Khurram, A.; Hussain, R.; Qadir, A.; Ahmad, S.R. Sources, distribution, and incipient threats of polymeric microplastic released from food storage plastic materials. Environ. Monit. Assess. 2023, 195, 638. [Google Scholar] [CrossRef]
- Rillig, M.C.; Lehmann, A.J.S. Microplastic in terrestrial ecosystems. Science 2020, 368, 1430–1431. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, D.; Iordache, B.B.M.; Stelescu, M.D.; Georgescu, M.; Sönmez, M. Technological considerations regarding the mechanical recycling of waste from polyethylene and polypropylene packaging. In Proceedings of the Advanced Materials and Systems ICAMS, Bucharest, Romania, 26–28 October 2022; pp. 401–406. [Google Scholar]
- Available online: https://www.epa.gov/plastics/regulation-and-policy (accessed on 20 May 2024).
- Nituica, M.; Oprea, O.; Stelescu, M.D.; Sonmez, M.; Georgescu, M.; Alexandrescu, L.; Motelica, L. Polymeric Biocomposite Based on Thermoplastic Polyurethane (TPU) and Protein and Elastomeric Waste Mixture. Materials 2023, 16, 5279. [Google Scholar] [CrossRef]
- Available online: https://www.europarl.europa.eu/news/en/press-room/20240419IPR20589/new-eu-rules-to-reduce-reuse-and-recycle-packaging (accessed on 30 March 2024).
- Available online: https://plasticseurope.org/wp-content/uploads/2024/03/CEreport_fullreport_2024_light-1.pdf (accessed on 30 March 2024).
- Datta, D.; Halder, G. Enhancing degradability of plastic waste by dispersing starch into low density polyethylene matrix. Process Saf. Environ. Prot. 2018, 114, 143–152. [Google Scholar] [CrossRef]
- Kaboorani, A.; Gray, N.; Hamzeh, Y.; Abdulkhani, A.; Shirmohammadli, Y. Tailoring the low-density polyethylene—Thermoplastic starch composites using cellulose nanocrystals and compatibilizer. Polym. Test. 2021, 93, 107007. [Google Scholar] [CrossRef]
- Surendren, A.; Mohanty, A.K.; Liu, Q.; Misra, M. A review of biodegradable thermoplastic starches, their blends and composites: Recent developments and opportunities for single-use plastic packaging alternatives. Green Chem. 2022, 24, 8606–8636. [Google Scholar] [CrossRef]
- LaPray, B.; Quan, W.; Allen, D.R. Articles Formed with Biodegradable Materials and Strength Characteristics of the Same. U.S. Patent US10995201B2, 4 May 2021. [Google Scholar]
- Adamczyk, G.; Krystyjan, M.; Kuźniar, P.; Kowalczewski, P.Ł.; Bobel, I. An Insight into Pasting and Rheological Behavior of Potato Starch Pastes and Gels with Whole and Ground Chia Seeds. Gels 2022, 8, 598. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.B.; Chatterjee, T.; Naskar, K. Dynamically vulcanized blends of UHM-EPDM and polypropylene: Role of nano-fillers improving thermal and rheological properties. Mater. Today Commun. 2020, 25, 101486. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, T.; Lin, W.; Tan, Y.; Chen, R.; Huang, Z.; Yin, X.; Qu, J. Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos. Sci. Technol. 2017, 145, 157–164. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Oprea, O.-C.; Motelica, L.; Ficai, A.; Trusca, R.-D.; Sonmez, M.; Nituica, M.; Georgescu, M. Obtaining and Characterizing New Types of Materials Based on Low-Density Polyethylene and Thermoplastic Starch. J. Compos. Sci. 2024, 8, 134. [Google Scholar] [CrossRef]
- Mazerolles, T.; Heuzey, M.C.; Soliman, M.; Martens, H.; Kleppinger, R.; Huneault, M.A. Development of co-continuous morphology in blends of thermoplastic starch and low-density polyethylene. Carbohyd. Polym. 2019, 206, 757–766. [Google Scholar] [CrossRef]
- ISO 179-1:2023; Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. ISO: Geneva, Switzerland, 2023. Available online: https://cdn.standards.iteh.ai/samples/84393/c5581746f5fa4df4830d0b7257272d21/ISO-179-1-2023.pdf (accessed on 5 August 2024).
- ISO 306:2022; Plastics—Thermoplastic Materials—Determination of Vicat Softening Temperature (VST). ISO: Geneva, Switzerland, 2022. Available online: https://cdn.standards.iteh.ai/samples/82176/cbd8c56e734949f986efd3cec5dfb884/ISO-306-2022.pdf (accessed on 5 August 2024).
- ISO 868:2023; Plastics and Ebonite—Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). ISO: Geneva, Switzerland, 2003. Available online: https://standards.iteh.ai/catalog/standards/sist/b00a2780-f641-4857-8bb1-eb0d574b4af3/iso-868-2003 (accessed on 5 March 2024).
- ASTM-D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2015. Available online: https://cdn.standards.iteh.ai/samples/90583/526a83abb7544d49ac1a1a36382859fe/ASTM-D638-14.pdf (accessed on 1 August 2024).
- ISO 1183-1: 2023; Plastics—Methods for Determining the Density of Non-Cellular Plastics—Part 1: Immersion Method, Liquid Pycnometer Method and Titration Method. ISO: Geneva, Switzerland, 2023. Available online: https://www.iso.org/obp/ui/en/#iso:std:iso:1183:-1:dis:ed-4:v1:en (accessed on 3 August 2024).
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics, Part 1: Standard Method. ISO: Vernier, Geneva, 2022. Available online: https://standards.iteh.ai/catalog/standards/sist/77dcf130-b606-4799-9315-a824a7f841ce/iso-1133-1-2022 (accessed on 1 August 2024).
- Huneault, M.A.; Li, H.B. Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 2007, 48, 270–280. [Google Scholar] [CrossRef]
- Taguet, A.; Huneault, M.A.; Favis, B.D. Interface/morphology relationships in polymer blends with thermoplastic starch. Polymer 2009, 50, 5733–5743. [Google Scholar] [CrossRef]
- Li, G.; Sarazin, P.; Orts, W.J.; Imam, S.H.; Favis, B.D. Biodegradation of Thermoplastic Starch and its Blends with Poly(lactic acid) and Polyethylene: Influence of Morphology. Macromol. Chem. Phys. 2011, 212, 1147–1154. [Google Scholar] [CrossRef]
- Tena-Salcido, C.S.; Rodriguez-Gonzalez, F.J.; Mendez-Hernandez, M.L.; Contreras-Esquivel, J.C. Effect of morphology on the biodegradation of thermoplastic starch in LDPE/TPS blends. Polym. Bull. 2008, 60, 677–688. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Oprea, O.C.; Sonmez, M.; Ficai, A.; Motelica, L.; Ficai, D.; Georgescu, M.; Gurau, D.F. Structural and Thermal Characterization of Some Thermoplastic Starch Mixtures. Polysaccharides 2024, 5, 504–522. [Google Scholar] [CrossRef]
- Wunderlich, B. Appendix—ATHAS Table of Thermal Properties of Linear Macromolecules; Academic Press: London, UK, 1990; pp. 417–431. [Google Scholar]
- Motelica, L.; Ficai, D.; Oprea, O.C.; Trusca, R.D.; Ficai, A.; Stelescu, M.D.; Sonmez, M.; Nituica, M.; Mustatea, G.; Holban, A.M. Antimicrobial Packaging for Plum Tomatoes Based on ZnO Modified Low-Density Polyethylene. Int. J. Mol. Sci. 2024, 25, 6073. [Google Scholar] [CrossRef]
- Charles, J. Qualitative Analysis of High Density Polyethylene Using FTIR Spectroscopy. Asian J. Chem. 2010, 21, 4477–4484. [Google Scholar]
- Fatima Ezzahrae, M.; Nacer, A.; Latifa, E.; Abdellah, Z.; Mohamed, I.; Mustapha, J. Thermal and mechanical properties of a high-density polyethylene (HDPE) composite reinforced with wood flour. Mater. Today Proc. 2023, 72, 3602–3608. [Google Scholar] [CrossRef]
- Fonseca-García, A.; Osorio, B.H.; Aguirre-Loredo, R.Y.; Calambas, H.L.; Caicedo, C. Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties. Carbohydr. Polym. 2022, 293, 119744. [Google Scholar] [CrossRef]
- Paluch, M.; Ostrowska, J.; Tyński, P.; Sadurski, W.; Konkol, M. Structural and Thermal Properties of Starch Plasticized with Glycerol/Urea Mixture. J. Polym. Environ. 2022, 30, 728–740. [Google Scholar] [CrossRef]
- Sukkaneewat, B.; Panrot, T.; Rojruthai, P.; Wongpreedee, T.; Prapruddivongs, C. Plasticizing effects from citric acid/palm oil combinations for sorbitol-crosslinked starch foams. Mater. Chem. Phys. 2022, 278, 125732. [Google Scholar] [CrossRef]
- Kibirkštis, E.; Mayik, V.; Zatserkovna, R.; Vaitasius, K.; Stepanenko, A.; Kandrotaitė-Janutienė, R.; Venytė, I.; Danilovas, P.P. Study of physical and mechanical properties of partially biodegradable LDPE polymeric films and their application for printing and packaging. Polym. Test. 2022, 112, 107646. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Constantin, D.I.; Sonmez, M. Development of elasto-plastic eco-nano-materials for footwear industry. In Proceedings of the 8th International Conference on Advanced Materials and Systems, Bucharest, Romania, 1–3 October 2020; pp. 472–479. [Google Scholar]
- Motelica, L.; Ficai, D.; Petrisor, G.; Oprea, O.C.; Trusca, R.D.; Ficai, A.; Andronescu, E.; Hudita, A.; Holban, A.M. Antimicrobial Hydroxyethyl-Cellulose-Based Composite Films with Zinc Oxide and Mesoporous Silica Loaded with Cinnamon Essential Oil. Pharmaceutics 2024, 16, 1225. [Google Scholar] [CrossRef] [PubMed]
- Bikiaris, D.; Prinos, J.; Koutsopoulos, K.; Vouroutzis, N.; Pavlidou, E.; Frangis, N.; Panayiotou, C. LDPE/plasticized starch blends containing PE-g-MA copolymer as compatibilizer. Polym. Degrad. Stab. 1998, 59, 287–291. [Google Scholar] [CrossRef]
- Carvalho, B.O.; Gonçalves, L.P.C.; Mendonça, P.V.; Pereira, J.P.; Serra, A.C.; Coelho, J.F.J. Replacing Harmful Flame Retardants with Biodegradable Starch-Based Materials in Polyethylene Formulations. Polymers 2023, 15, 4078. [Google Scholar] [CrossRef]
- Ahmad, H.; Rostami-Tapeh-Esmaeil, E.; Rodrigue, D. The effect of chemical crosslinking on the properties of Rotomolded high density polyethylene. J. Appl. Polym. Sci. 2024, 141, e54744. [Google Scholar] [CrossRef]
- Çakır, N.Y.; İnan, Ö.; Ergün, M.; Kodal, M.; Özkoç, G. Unlocking the Potential Use of Reactive POSS as a Coagent for EPDM/PP-Based TPV. Polymers 2023, 15, 2267. [Google Scholar] [CrossRef]
- Rigail-Cedeño, A.; Vera-Sorroche, J.; García-Mejía, G.; Intriago, R. Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites. Energies 2022, 15, 859. [Google Scholar] [CrossRef]
- López-Cabrera, H.R.; Figueroa-López, U.; Taylor, A.C.; Guevara-Morales, A. Dynamic Fracture Resistance under Plane Strain Conditions of High-Density Polyethylene Nanoclay Composites. Polymers 2023, 15, 813. [Google Scholar] [CrossRef]
- Abdul Wahab, M.K.; Ismail, H.; Othman, N. Compatibilization Effects of PE-g-MA on Mechanical, Thermal and Swelling Properties of High Density Polyethylene/Natural Rubber/Thermoplastic Tapioca Starch Blends. Polym.-Plast. Technol. Eng. 2012, 51, 298–303. [Google Scholar] [CrossRef]
- Bendjaouahdou, C. Ageing Study and Solvent Resistance of a Polypropylene and Organoclay Nanocomposite. Res. Sq. 2022; preprint. [Google Scholar] [CrossRef]
- Guichard, B.; Ledieu, B.; Cassagnau, P.; Espuche, E. Impact of toluene sorption on oligomers and antioxydants migration from HDPE pipes. Polym. Test. 2023, 124, 108052. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Airinei, A.; Bargan, A.; Fifere, N.; Georgescu, M.; Sonmez, M.; Nituica, M.; Alexandrescu, L.; Stefan, A. Mechanical Properties and Equilibrium Swelling Characteristics of Some Polymer Composites Based on Ethylene Propylene Diene Terpolymer (EPDM) Reinforced with Hemp Fibers. Materials 2022, 15, 6838. [Google Scholar] [CrossRef] [PubMed]
Material | Characteristics |
---|---|
High-density polyethylene (HDPE) TIPELIN 1100J | Copolymer (with propene-1 as comonomer), melt mass-flow rate (190 °C, 2.16 kg) 8.0 g/10 min; density: 0.961 g/cm3; tensile stress at break: 15 MPa; hardness: 63° ShD, Vicat softening temperature: 128 °C. |
Starch | Water insoluble substances 0.28%, loss on drying (105 °C) 17.52% |
Glycerin | Acidity 0.02%, density 1.26 g/cm3 |
Citric acid anhydrous | C8H8O7, purity 99.8%, sulfate ash < 0.02%, chlorides (Cl) < 0.0005%, sulfates (SO4) < 0.02%, oxalates (C2O4) < 0.05% |
PE-g-AM (Admer NF 468E) | Density: 0.92 g/cm3: melting point: 120 °C; hardness: 51° ShD; Vicat softening temperature: 95 °C; melt mass-flow rate (190 °C, 2.16 kg) 4.0 g/10 min |
EPDM (Nordel 4760) | Containing 70 wt % ethylene and 4.9 wt % ethylenenorbornene (ENB), with a Mooney viscosity of 70 ML1 + 4 at 120 °C, density of 0.88 g/cm3, and crystallinity degree of 10%. |
Luperox F 40 PE | 40% assay, 3.8% oxygen active |
TMPT (ALCANPOUDRE TMPTMA-70) | 70% ingredient active and 30% precipitated silica |
Nanoclay (Nanomer I.31 PS) | Powder, organo-montmorillonite (OMMT), contains 0.5–5 wt% aminopropyltriethoxysilan and 15–35 wt% octadecylamine, particle size ≤ 20 μm |
Ingredients | Samples Symbol | |||||
---|---|---|---|---|---|---|
H0 | H1 | H2 | H3 | H4 | H5 | |
HDPE, g | 260 | 185 | 175 | 165 | 165 | 165 |
Plasticized starch, g | - | 75 | 75 | 75 | 75 | 75 |
PE-g-MA, g | - | - | 10 | 10 | 10 | 10 |
EPDM, g | - | - | - | 10 | 10 | 10 |
Peroxide, g | - | - | - | - | 0.2 | 0.2 |
TMPT, g | - | - | - | - | 0.2 | 0.2 |
OMMT, g | - | - | - | - | - | 7.5 |
Sample | T1% | T5% | T10% | Melting Onset | Melting Enthalpy | Crystallinity Degree (HDPE) |
---|---|---|---|---|---|---|
H0 | 209 °C | 303 °C | 333 °C | 126.8 °C | 157.4 J/g | 53.72% |
H1 | 156 °C | 245 °C | 291 °C | 126.3 °C | 126.2 J/g | 60.53% |
H2 | 153 °C | 232 °C | 283 °C | 126.3 °C | 123.8 J/g | 62.77% |
H3 | 148 °C | 212 °C | 271 °C | 125.3 °C | 127.6 J/g | 68.62% |
H4 | 159 °C | 239 °C | 288 °C | 126.4 °C | 117.4 J/g | 63.23% |
H5 | 159 °C | 227 °C | 263 °C | 126.5 °C | 114.7 J/g | 63.56% |
Characteristics | H0 | H1 | H2 | H3 | H4 | H5 |
---|---|---|---|---|---|---|
Hardness, ° ShD | 71.0 ± 0.9 | 65.0 ± 0.5 | 64.0 ± 0.5 | 64.0 ± 0.5 | 63.0 ± 0.5 | 62.0 ± 0.5 |
Tensile Strength, N/mm2 | 22.09 ± 3.03 | 15.87 ± 3.62 | 17.02 ± 1.22 | 14.88 ± 1.81 | 16.8 ± 0.58 | 14.99 ± 0.55 |
Density, g/cm3 | 0.99 ± 0.00 | 1.09 ± 0.00 | 1.09 ± 0.00 | 1.09 ± 0.00 | 1.08 ± 0.00 | 1.08 ± 0.00 |
Charpy Notched, kJ/m2 Charpy Unnotched, kJ/m2 | 2.06 ± 0.68 | 1.08 ± 0.24 | 1.23 ± 0.23 | 1.53 ± 0.23 | 2.27 ± 0.01 | 1.64 ± 0.22 |
31.8 ± 5.67 | 7.96 ± 1.53 | 9.66 ± 2.75 | 20.29 ± 2.23 | 19.34 ± 6.32 | 14.63 ± 2.08 | |
Softening Temperature VICAT, °C | 104 ± 1 | 102 ± 1 | 101 ± 1 | 101 ± 1 | 101 ± 1 | 101 ± 2.5 |
Melting Range, °C | 150 ± 5 | 144 ± 5 | 143 ± 5 | 144 ± 5 | 136 ± 5 | 135 ± 5 |
M.F.I | 11.4 ± 0.04 | 10.7 ± 0.11 | 9.6 ± 0.11 | 8.4 ± 0.11 | 1.81 ± 0.86 | 2.69 ± 0.91 |
Sample Code | Mass Variation After 72 h Water Immersion at 23 °C | Water Absorption After 72 h Immersion at 23 °C | Mass Variation After 72 h Water Immersion at La 80 °C | Water Absorption After 72 h Immersion at 80 °C | Mass Variation After 72 h Toluene Immersion at 23 °C | Toluene Absorption After 72 h Immersion at 23 °C |
---|---|---|---|---|---|---|
% | % | % | % | % | % | |
H0 | 0.27 ± 0.16 | 0.39 ± 0.21 | 1.17 ± 0.08 | 0.81 ± 0.17 | 4.33 ± 0.93 | 4.63 ± 1.02 |
H1 | 1.33 ± 0.58 | 5.37 ± 0.59 | −2.23 ± 0.75 | 9.89 ± 1.28 | 6.00 ± 0.17 | 7.11 ± 0.74 |
H2 | 0.96 ± 0.10 | 1.39 ± 0.15 | 5.30 ± 0.62 | 4.31 ± 0.99 | 5.53 ± 0.21 | 5.89 ± 0.31 |
H3 | 0.99 ± 0.13 | 1.18 ± 0.10 | 7.12 ± 0.23 | 5.02 ± 0.34 | 6.22 ± 1.52 | 6.64 ± 1.28 |
H4 | 0.82 ± 0.15 | 1.46 ± 0.16 | 8.33 ± 1.70 | 4.38 ± 2.92 | 6.73 ± 0.11 | 6.98 ± 0.30 |
H5 | 0.97 ± 0.15 | 1.66 ± 0.17 | 4.63 ± 0.89 | 4.09 ± 0.98 | 7.42 ± 0.22 | 7.89 ± 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stelescu, M.D.; Oprea, O.-C.; Constantinescu, D.; Motelica, L.; Ficai, A.; Trusca, R.-D.; Sonmez, M.; Gurau, D.F.; Georgescu, M.; Constantinescu, R.R.; et al. Characterization of Mixtures Based on High-Density Polyethylene and Plasticized Starch. Polymers 2024, 16, 3051. https://doi.org/10.3390/polym16213051
Stelescu MD, Oprea O-C, Constantinescu D, Motelica L, Ficai A, Trusca R-D, Sonmez M, Gurau DF, Georgescu M, Constantinescu RR, et al. Characterization of Mixtures Based on High-Density Polyethylene and Plasticized Starch. Polymers. 2024; 16(21):3051. https://doi.org/10.3390/polym16213051
Chicago/Turabian StyleStelescu, Maria Daniela, Ovidiu-Cristian Oprea, Doina Constantinescu, Ludmila Motelica, Anton Ficai, Roxana-Doina Trusca, Maria Sonmez, Dana Florentina Gurau, Mihai Georgescu, Rodica Roxana Constantinescu, and et al. 2024. "Characterization of Mixtures Based on High-Density Polyethylene and Plasticized Starch" Polymers 16, no. 21: 3051. https://doi.org/10.3390/polym16213051
APA StyleStelescu, M. D., Oprea, O. -C., Constantinescu, D., Motelica, L., Ficai, A., Trusca, R. -D., Sonmez, M., Gurau, D. F., Georgescu, M., Constantinescu, R. R., Vasile, B. -S., & Ficai, D. (2024). Characterization of Mixtures Based on High-Density Polyethylene and Plasticized Starch. Polymers, 16(21), 3051. https://doi.org/10.3390/polym16213051