Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites
<p>Distribution of primary plastics consumption in Ecuador for 2019 [<a href="#B9-energies-15-00859" class="html-bibr">9</a>].</p> "> Figure 2
<p>From the end of the screw: (<b>a</b>) dispersive mixer (Maddock) and distributive mixers (<b>b</b>) Rings, and (<b>c</b>) Pineapple in the screw design.</p> "> Figure 3
<p>An energy analyzer (<b>a</b>) and thermal imager (<b>b</b>,<b>c</b>).</p> "> Figure 4
<p>X-ray diffractometry of the 97% rHDPE/rPP and 3% C20A blend at different screw speeds, JCPDS-Card No. #00-007-0330.</p> "> Figure 5
<p>X-ray diffractometry of the 92% rHDPE/rPP, 3% C20A, and 5% OBC blend at different screw speeds, JCPDS-Card No. #00-007-0330.</p> "> Figure 6
<p>Interlamellar distance d001 of the 97% rHDPE/rPP and 3% C20A blend at different screw speeds.</p> "> Figure 7
<p>SEM images of the 97% rHDPE/rPP and 3% C20A blend at different screw speeds (<b>a</b>) 10 RPM, (<b>b</b>) 20 RPM, (<b>c</b>) 30 RPMm, (<b>d</b>) 40 RPM, (<b>e</b>) 50 RPM.</p> "> Figure 7 Cont.
<p>SEM images of the 97% rHDPE/rPP and 3% C20A blend at different screw speeds (<b>a</b>) 10 RPM, (<b>b</b>) 20 RPM, (<b>c</b>) 30 RPMm, (<b>d</b>) 40 RPM, (<b>e</b>) 50 RPM.</p> "> Figure 8
<p>SEM images of the 92% rHDPE/rPP, 3% C20A, and 5% OBC blend: (<b>a</b>) 10 RPM, (<b>b</b>) 20 RPM, (<b>c</b>) 30 RPM, (<b>d</b>) 40 RPM, and (<b>e</b>) 50 RPM.</p> "> Figure 9
<p>Shear viscosity measured using a plate-plate rheometer at 180 °C (<b>a</b>) and melt temperature as a function of volume throughput (<b>b</b>).</p> "> Figure 10
<p>Volume throughput (<b>a</b>), energy (<b>b</b>), and specific energy (<b>c</b>) as a function of screw speed.</p> "> Figure 10 Cont.
<p>Volume throughput (<b>a</b>), energy (<b>b</b>), and specific energy (<b>c</b>) as a function of screw speed.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanocomposites
2.3. Characterization and Measurement
3. Results and Discussion
3.1. Studies of Nanocomposite Morphology
3.2. Thermal Studies
3.3. Rheological Studies
4. Conclusions
5. Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Forum, M.C.; World Economic; Ellen MacArthur Foundation. The New Plastics Economy—Rethinking the Future of Plastics. 2016. Available online: http://www.ellenmacarthurfoundation.org/publications (accessed on 12 January 2022).
- Klemeš, J.J.; Van Fan, Y.; Jiang, P. Plastics: Friends or foes? The circularity and plastic waste footprint. Energy Sources Part A Recover. Util. Environ. Eff. 2021, 43, 1549–1565. [Google Scholar] [CrossRef]
- Bailey, E.; Winey, K. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposites: Review. Prog. Polym. Sci. 2020, 105, 101242. [Google Scholar] [CrossRef]
- Bajracharya, R.M.; Manalo, A.C.; Karunasena, W.; Lau, K.-T. Characterisation of recycled mixed plastic solid wastes: Coupon and full-scale investigation. Waste Manag. 2016, 48, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Baron, C. Production Forecast of Thermoplastics Worldwide from 2020 to 2050, by Type. 2020. Available online: https://www.statista.com/statistics/1192886/thermoplastics-production-volume-by-type-globally/ (accessed on 12 January 2020).
- Ecuadorian Plastics Asociation (ASEPLAS). INTEGRA-Economía Circular: Un modelo de crecimiento. Plastics 2020, 60, 35. [Google Scholar]
- Ragaert, K.; Huysveld, S.; Vyncke, G.; Hubo, S.; Veelaert, L.; Dewulf, J.; Du Bois, E. Design from recycling: A complex mixed plastic waste case study. Resour. Conserv. Recycl. 2020, 155, 104646. [Google Scholar] [CrossRef]
- Rigail-Cedeño, A.; Diaz-Barrios, A.; Alban, B.; Caceres, J.; Pilataxi, J.; Molina, V.; Lazo, M. The effect of olefin block copolymer and organoclays in recycled HDPE/PP nanocomposites. AIP Conf. Proc. 2020, 2205, 020073. [Google Scholar] [CrossRef]
- Ecuadorian Plastics Asociation (ASEPLAS). INTEGRA. Plastics 2019, 56, 35. [Google Scholar]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Honorato, L.R.; Rodrigues, P.D.F.; Silva, A.D.A.; Moreira, L.P. Synergistic effects of organoclay Cloisite 15A on recycled polyethylene terephthalate. J. Mater. Res. Technol. 2020, 9, 13087–13096. [Google Scholar] [CrossRef]
- Takkalkar, P.; Nizamuddin, S.; Griffin, G.; Kao, N. Thermal Properties of Sustainable Thermoplastics Nanocomposites Containing Nanofillers and Its Recycling Perspective BT—Sustainable Polymer Composites and Nanocomposites; Inamuddin, S., Thomas, R., Mishra, K., Asiri, A.M., Eds.; Springer International Publishing: Cham, Germany, 2019; pp. 915–933. [Google Scholar]
- Rigail-Cedeño, A.; Diaz-Barrios, A.; Gallardo-Bastidas, J.; Ullaguari-Loor, S.; Morales-Fuentes, N. Recycled HDPE/PET Clay Nanocomposites. Key Eng. Mater. 2019, 821, 67–73. [Google Scholar] [CrossRef]
- Dennis, H.; Hunter, D.; Chang, D.; Kim, S.; White, J.; Cho, J.; Paul, D. Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer 2001, 42, 9513–9522. [Google Scholar] [CrossRef]
- Chaudhary, D.S.; Prasad, R.; Gupta, R.K.; Bhattacharya, S.N. Clay intercalation and influence on crystallinity of EVA-based clay nanocomposites. Thermochim. Acta 2005, 433, 187–195. [Google Scholar] [CrossRef]
- Costantino, M.A.; Pettarin, V.; Viana, J.C.; Pontes, A.J.; Pouzada, A.S.; Frontini, P.M. Polypropylene/clay nanocomposites produced by SCORIM: Deformation and fracture properties. Strojniški Vestn. J. Mech. Eng. 2013, 11, 697–704. [Google Scholar] [CrossRef] [Green Version]
- Normand, G.; Mija, A.; Pagnotta, S.; Peuvrel-Disdier, E.; Vergnes, B. Preparation of polypropylene nanocomposites by melt-mixing: Comparison between three organoclays. J. Appl. Polym. Sci. 2017, 134, 45053. [Google Scholar] [CrossRef]
- Normand, G.; Peuvrel-Disdier, E.; Vergnes, B. Matrix Degradation during High Speed Extrusion of Polypropylene/Clay Nanocomposites—Influence on Filler Dispersion. Int. Polym. Process. 2017, 31, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Domenech, T.; Peuvrel-Disdier, E.; Vergnes, B. Influence of twin-screw processing conditions on structure and properties of polypropylene—Organoclay nanocomposites. Int. Polym. Process. 2012, 27, 517–526. [Google Scholar] [CrossRef]
- Dyadichev, V.V.; Kolesnikov, A.V.; Menyuk, S.G.; Dyadichev, A.V. Improvement of extrusion equipment and technologies for processing secondary combined polymer materials and mixtures. J. Phys. Conf. Ser. 2019, 1210, 012035. [Google Scholar] [CrossRef]
- Garofalo, E.; di Maio, L.; Scarfato, P.; Pietrosanto, A.; Protopapa, A.; Incarnato, L. Study on improving the processability and properties of mixed polyolefin post-consumer plastics for piping applications. Polymers 2021, 13, 71. [Google Scholar] [CrossRef]
- Morgan, A.B.; Gilman, J.W. Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: A comparative study. J. Appl. Polym. Sci. 2002, 87, 1329–1338. [Google Scholar] [CrossRef]
- Vera-Sorroche, J.; Kelly, A.L.; Brown, E.; Gough, T.; Abeykoon, C.; Coates, P.; Deng, J.; Li, K.; Harkin-Jones, E.; Price, M. The effect of melt viscosity on thermal efficiency for single screw extrusion of HDPE. Chem. Eng. Res. Des. 2014, 92, 2404–2412. [Google Scholar] [CrossRef] [Green Version]
- Estrada, O.; Ortiz, J.C.; Hernández, A.; López, I.; Chejne, F.; Noriega, M.D. Experimental study of energy performance of grooved feed and grooved plasticating single screw extrusion processes in terms of SEC, theoretical maximum energy efficiency and relative energy efficiency. Energy 2020, 194, 116879. [Google Scholar] [CrossRef]
- Vera-Sorroche, J.; Kelly, A.; Brown, E.; Coates, P.; Karnachi, N.; Harkin-Jones, E.; Li, K.; Deng, J. Thermal optimisation of polymer extrusion using in-process monitoring techniques. Appl. Therm. Eng. 2013, 53, 405–413. [Google Scholar] [CrossRef]
- Wang, K.; Amin, K.; An, Z.; Cai, Z.; Chen, H.; Chen, H.; Dong, Y.; Feng, X.; Fu, W.; Gu, J.; et al. Advanced functional polymer materials. Mater. Chem. Front. 2020, 4, 1803–1915. [Google Scholar] [CrossRef]
- Wong, A.C.-Y.; Lam, J.C.M.; Liu, T.; Zhu, F. Visualization studies on the comparison of mixing characteristics of single-screws having different mixing elements. Adv. Polym. Technol. 2000, 19, 1–13. [Google Scholar] [CrossRef]
- Abeykoon, C.; Kelly, A.L.; Brown, E.C.; Vera-Sorroche, J.; Coates, P.; Harkin-Jones, E.; Howell, K.B.; Deng, J.; Li, K.; Price, M. Investigation of the process energy demand in polymer extrusion: A brief review and an experimental study. Appl. Energy 2014, 136, 726–737. [Google Scholar] [CrossRef]
- Cantor, K.M. Analyzing extruder energy consumption. SPE ANTEC Tec. Pap. 2010, 2, 1300–1306. [Google Scholar]
- Chrissafis, K.; Paraskevopoulos, K.M.; Tsiaoussis, I.; Bikiaris, D. Comparative study of the effect of different nanoparticles on the mechanical properties, permeability, and thermal degradation mechanism of HDPE. J. Appl. Polym. Sci. 2009, 114, 1606–1618. [Google Scholar] [CrossRef]
- Abeykoon, C.; Pérez, P.; Kelly, A.L. The effect of materials’ rheology on process energy consumption and melt thermal quality in polymer extrusion. Polym. Eng. Sci. 2020, 60, 1244–1265. [Google Scholar] [CrossRef] [Green Version]
Blend | Description |
---|---|
1 | rHDPE/rPP |
2 | rHDPE/rPP/5OBC |
3 | rHDPE/rPP/3C20A |
4 | rHDPE/rPP/3C20A/5OBC |
10 RPM | 20 RPM | 30 RPM | 40 RPM | 50 RPM | ||
---|---|---|---|---|---|---|
rHDPE/rPP/C20A | Average area [µm]2 | 22.3 ± 0 | 31.0 ± 5.7 | 35.6 ± 16.0 | 44.0 ± 5.5 | 45.6 ± 7.7 |
Die temperature [°C] | 196 | 212 | 225 | 227 | 231 | |
rHDPE/rPP/C20A/OBC | Average area [µm]2 | 119.7 ± 24.6 | 67.6 ± 5.8 | 63.2 ± 16.2 | 45.2 ± 3.8 | 41.6 ± 7.5 |
Die temperature [°C] | 220 | 229 | 234 | 240 | 244 |
Description | rHDPE | rPP | ||
---|---|---|---|---|
Tm (°C) | Xc (%) | Tm (°C) | Xc (%) | |
rHDPE/rPP | 134.2 | 56.9 | 162.7 | 1.3 |
rHDPE/rPP/5OBC | 134.2 | 56.7 | 162.7 | 1.2 |
rHDPE/rPP/3C20A | 134.1 | 56.5 | 162.6 | 0.7 |
rHDPE/rPP/3C20A/5OBC | 134.3 | 52.6 | 161.9 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rigail-Cedeño, A.; Vera-Sorroche, J.; García-Mejía, G.; Intriago, R. Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites. Energies 2022, 15, 859. https://doi.org/10.3390/en15030859
Rigail-Cedeño A, Vera-Sorroche J, García-Mejía G, Intriago R. Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites. Energies. 2022; 15(3):859. https://doi.org/10.3390/en15030859
Chicago/Turabian StyleRigail-Cedeño, Andres, Javier Vera-Sorroche, Gladys García-Mejía, and Raul Intriago. 2022. "Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites" Energies 15, no. 3: 859. https://doi.org/10.3390/en15030859
APA StyleRigail-Cedeño, A., Vera-Sorroche, J., García-Mejía, G., & Intriago, R. (2022). Effect of the Intercalation and Dispersion of Organoclays on Energy Demand in the Extrusion of Recycled HDPE/PP Nanocomposites. Energies, 15(3), 859. https://doi.org/10.3390/en15030859